Unveiling the Connectivity of Complex Networks Using Ordinal Transition Methods
Abstract
:1. Introduction
2. Model and Methods
2.1. Model
2.2. Methods
2.2.1. Ordinal Permutation Entropy
2.2.2. Ordinal Transition Entropy
2.2.3. Synchronization Measures
3. Results
3.1. Star Network
3.2. Scale-Free Network
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bandt, C.; Pompe, B. Permutation Entropy: A Natural Complexity Measure for Time Series. Phys. Rev. Lett. 2002, 88, 174102. [Google Scholar] [CrossRef] [PubMed]
- Leyva, I.; Martínez, J.H.; Masoller, C.; Rosso, O.A.; Zanin, M. 20 years of ordinal patterns: Perspectives and challenges. Europhys. Lett. 2022, 138, 31001. [Google Scholar] [CrossRef]
- Tlaie, A.; Ballesteros-Esteban, L.; Leyva, I.; Sendiña-Nadal, I. Statistical complexity and connectivity relationship in cultured neural networks. Chaos Solitons Fractals 2019, 119, 284–290. [Google Scholar] [CrossRef]
- Lehnertz, K. Ordinal methods for a characterization of evolving functional brain networks. Chaos 2023, 33, 022101. [Google Scholar] [CrossRef] [PubMed]
- Tiana-Alsina, J.; Quintero-Quiroz, C.; Masoller, C. Comparing the dynamics of periodically forced lasers and neurons. New J. Phys. 2019, 21, 103039. [Google Scholar] [CrossRef] [Green Version]
- Buldú, J.M.; Gómez, M.Á.; Herrera-Diestra, J.L.; Martínez, J.H. Nonlinear dynamics and networks in sports. Chaos Solitons Fractals 2021, 142, 110518. [Google Scholar] [CrossRef]
- Small, M. Complex networks from time series: Capturing dynamics. In Proceedings of the IEEE International Symposium on Circuits and Systems, Beijing, China, 19–23 May 2013; pp. 2509–2512. [Google Scholar] [CrossRef]
- Sun, X.; Small, M.; Zhao, Y.; Xue, X. Characterizing system dynamics with a weighted and directed network constructed from time series data. Chaos 2014, 24, 24402. [Google Scholar] [CrossRef] [Green Version]
- McCullough, M.; Small, M.; Stemler, T.; Ho, H.; Iu, C.; Iu, H.H.C. Time lagged ordinal partition networks for capturing dynamics of continuous dynamical systems. Chaos 2015, 25, 53101. [Google Scholar] [CrossRef] [Green Version]
- Pessa, A.A.; Ribeiro, H.V. Characterizing stochastic time series with ordinal networks. Phys. Rev. E 2019, 100, 42304. [Google Scholar] [CrossRef] [Green Version]
- Olivares, F.; Zanin, M.; Zunino, L.; Pérez, D.G. Contrasting chaotic with stochastic dynamics via ordinal transition networks. Chaos 2020, 30, 063101. [Google Scholar] [CrossRef]
- Borges, J.B.; Ramos, H.S.; Mini, R.A.; Rosso, O.A.; Frery, A.C.; Loureiro, A.A. Learning and distinguishing time series dynamics via ordinal patterns transition graphs. Appl. Math. Comput. 2019, 362, 124554. [Google Scholar] [CrossRef]
- Cardoso-Pereira, I.; Borges, J.B.; Barros, P.H.; Loureiro, A.F.; Rosso, O.A.; Ramos, H.S. Leveraging the self-transition probability of ordinal patterns transition network for transportation mode identification based on GPS data. Nonlinear Dyn. 2022, 107, 889–908. [Google Scholar] [CrossRef]
- Huang, M.; Sun, Z.; Donner, R.V.; Zhang, J.; Guan, S.; Zou, Y. Characterizing dynamical transitions by statistical complexity measures based on ordinal pattern transition networks. Chaos 2021, 31, 33127. [Google Scholar] [CrossRef]
- Varley, T.F.; Denny, V.; Sporns, O.; Patania, A. Topological analysis of differential effects of ketamine and propofol anaesthesia on brain dynamics. R. Soc. Open Sci. 2021, 8, 201971. [Google Scholar] [CrossRef] [PubMed]
- Kulp, C.W.; Chobot, J.M.; Freitas, H.R.; Sprechini, G.D. Using ordinal partition transition networks to analyze ECG data. Chaos 2016, 26, 073114. [Google Scholar] [CrossRef]
- Wang, X.; Han, X.; Chen, Z.; Bi, Q.; Guan, S.; Zou, Y. Multi-scale transition network approaches for nonlinear time series analysis. Chaos Solitons Fractals 2022, 159, 112026. [Google Scholar] [CrossRef]
- Peng, K.; Shang, P. Characterizing ordinal network of time series based on complexity-entropy curve. Pattern Recognit. 2022, 124, 108464. [Google Scholar] [CrossRef]
- Nicolis, G.; Cantú, A.G.; Nicolis, C. Dynamical aspects of interaction networks. Int. J. Bifurc. Chaos 2005, 15, 3467–3480. [Google Scholar] [CrossRef]
- Zhang, J.; Small, M. Complex Network from Pseudoperiodic Time Series: Topology versus Dynamics. Phys. Rev. Lett. 2006, 96, 238701. [Google Scholar] [CrossRef] [Green Version]
- Lacasa, L.; Luque, B.; Ballesteros, F.; Luque, J.; Nuño, J.C. From time series to complex networks: The visibility graph. Proc. Natl. Acad. Sci. USA 2008, 105, 4972–4975. [Google Scholar] [CrossRef]
- Zou, Y.; Donner, R.V.; Marwan, N.; Donges, J.F.; Kurths, J. Complex network approaches to nonlinear time series analysis. Phys. Rep. 2019, 787, 1–97. [Google Scholar] [CrossRef]
- Silva, V.F.; Silva, M.E.; Ribeiro, P.; Silva, F. Time series analysis via network science: Concepts and algorithms. WIREs Data Min. Knowl. Discov. 2021, 11, e1404. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, J.; Tang, M.; Guo, H.; Small, M.; Zou, Y. Constructing ordinal partition transition networks from multivariate time series. Sci. Rep. 2017, 7, 7795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahriari, Z.; Small, M. Permutation Entropy of State Transition Networks to Detect Synchronization. Int. J. Bifurc. Chaos 2020, 30, 2050154. [Google Scholar] [CrossRef]
- Subramaniyam, N.P.; Donner, R.V.; Caron, D.; Panuccio, G.; Hyttinen, J. Causal coupling inference from multivariate time series based on ordinal partition transition networks. Nonlinear Dyn. 2021, 105, 555–578. [Google Scholar] [CrossRef]
- Ruan, Y.; Donner, R.V.; Guan, S.; Zou, Y. Ordinal partition transition network based complexity measures for inferring coupling direction and delay from time series. Chaos 2019, 29, 043111. [Google Scholar] [CrossRef]
- Ren, H.; Yuan, Q.; Semba, S.; Weng, T.; Gu, C.; Yang, H. Pattern interdependent network of cross-correlation in multivariate time series. Phys. Lett. Sect. A Gen. At. Solid State Phys. 2020, 384, 126781. [Google Scholar] [CrossRef]
- Echegoyen, I.; Vera-Ávila, V.; Sevilla-Escoboza, R.; Martínez, J.H.; Buldú, J.M. Ordinal synchronization: Using ordinal patterns to capture interdependencies between time series. Chaos Solitons Fractals 2019, 119, 8–18. [Google Scholar] [CrossRef] [Green Version]
- Tlaie, A.; Leyva, I.; Sevilla-Escoboza, R.; Vera-Avila, V.P.; Sendiña Nadal, I. Dynamical complexity as a proxy for the network degree distribution. Phys. Rev. E 2019, 99, 012310. [Google Scholar] [CrossRef] [Green Version]
- Letellier, C.; Leyva, I.; Sendiña Nadal, I. Dynamical complexity measure to distinguish organized from disorganized dynamics. Phys. Rev. E 2020, 101, 022204. [Google Scholar] [CrossRef] [Green Version]
- Rössler, O.E. An equation for continuous chaos. Phys. Lett. A 1976, 57, 397–398. [Google Scholar] [CrossRef]
- Gómez-Gardeñes, J.; Moreno, Y.; Arenas, A. Synchronizability determined by coupling strengths and topology on complex networks. Phys. Rev. E 2007, 75, 066106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahriari, Z.; Algar, S.D.; Walker, D.M.; Small, M. Ordinal Poincaré sections: Reconstructing the first return map from an ordinal segmentation of time series. Chaos Interdiscip. J. Nonlinear Sci. 2023, 33, 053109. [Google Scholar] [CrossRef]
- Amigó, J.M.; Zambrano, S.; Sanjuán, M.A.F. True and false forbidden patterns in deterministic and random dynamics. Europhys. Lett. 2007, 79, 50001. [Google Scholar] [CrossRef]
- Masoller, C.; Hong, Y.; Ayad, S.; Gustave, F.; Barland, S.; Pons, A.J.; Gómez, S.; Arenas, A. Quantifying sudden changes in dynamical systems using symbolic networks. New J. Phys. 2015, 17, 023068. [Google Scholar] [CrossRef]
- McCullough, M.; Small, M.; Iu, H.H.C.; Stemler, T. Multiscale ordinal network analysis of human cardiac dynamics. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2017, 375, 20160292. [Google Scholar] [CrossRef] [Green Version]
- Unakafov, A.M.; Keller, K. Conditional entropy of ordinal patterns. Phys. D Nonlinear Phenom. 2014, 269, 94–102. [Google Scholar] [CrossRef] [Green Version]
- Zanin, M.; Olivares, F. Ordinal patterns-based methodologies for distinguishing chaos from noise in discrete time series. Commun. Phys. 2021, 4, 190. [Google Scholar] [CrossRef]
- Boccaletti, S.; Kurths, J.; Osipov, G.; Valladares, D.; Zhou, C. The synchronization of chaotic systems. Phys. Rep. 2002, 366, 1–101. [Google Scholar] [CrossRef]
- Barabási, A.L.; Albert, R. Emergence of scaling in random networks. Science 1999, 286, 509–512. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Kurths, J. Hierarchical synchronization in complex networks with heterogeneous degrees. Chaos Interdiscip. J. Nonlinear Sci. 2006, 16, 015104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, T. Hub synchronization in scale-free networks. Phys. Rev. E 2010, 82, 036201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vera-Ávila, V.; Sevilla-Escoboza, R.; Lozano-Sánchez, A.; Rivera-Durón, R.; Buldú, J.M. Experimental datasets of networks of nonlinear oscillators: Structure and dynamics during the path to synchronization. Data Brief 2020, 28, 105012. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almendral, J.A.; Leyva, I.; Sendiña-Nadal, I. Unveiling the Connectivity of Complex Networks Using Ordinal Transition Methods. Entropy 2023, 25, 1079. https://doi.org/10.3390/e25071079
Almendral JA, Leyva I, Sendiña-Nadal I. Unveiling the Connectivity of Complex Networks Using Ordinal Transition Methods. Entropy. 2023; 25(7):1079. https://doi.org/10.3390/e25071079
Chicago/Turabian StyleAlmendral, Juan A., I. Leyva, and Irene Sendiña-Nadal. 2023. "Unveiling the Connectivity of Complex Networks Using Ordinal Transition Methods" Entropy 25, no. 7: 1079. https://doi.org/10.3390/e25071079
APA StyleAlmendral, J. A., Leyva, I., & Sendiña-Nadal, I. (2023). Unveiling the Connectivity of Complex Networks Using Ordinal Transition Methods. Entropy, 25(7), 1079. https://doi.org/10.3390/e25071079