Variable-Step Multiscale Fuzzy Dispersion Entropy: A Novel Metric for Signal Analysis
Abstract
:1. Introduction
2. Fundamental Theory
2.1. Fuzzy Dispersion Entropy
2.2. Variable-Step Multiscale Fuzzy Dispersion Entropy
3. Validation of Simulation Signal
3.1. Validation of Separability
3.2. Validation of the Ability to Detect Dynamic Changes
4. Validation of the Realistic Signal
4.1. Validation of Gear Signal
4.2. Validation of Ship-Radiated Noise
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, G.; Yang, Z.; Yang, H. Feature Extraction of Ship-Radiated Noise Based on Regenerated Phase-Shifted Sinusoid-Assisted EMD, Mutual Information, and Differential Symbolic Entropy. Entropy 2019, 21, 176. [Google Scholar] [CrossRef] [Green Version]
- Martyushev, L.M.; Seleznev, V.D. Maximum entropy production principle in physics, chemistry and biology. Phys. Rep. 2006, 426, 1–45. [Google Scholar] [CrossRef]
- Rostaghi, M.; Khatibi, M.K.; Ashory, M.R.; Azami, H. Bearing Fault Diagnosis Using Refined Composite Generalized Multiscale Dispersion Entropy-Based Skewness and Variance and Multiclass FCM-ANFIS. Entropy 2021, 3, 510. [Google Scholar] [CrossRef]
- Zhang, X.; Liang, Y.; Zhou, J.; Zang, Y. A novel bearing fault diagnosis model integrated permutation entropy, ensemble empirical mode decomposition and optimized SVM. Measurement 2015, 69, 164–179. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.; Ren, M.; He, M.; Jin, L. Rolling Bearing Fault Diagnosis Based on Multiscale Permutation Entropy and SOA-SVM. Machines 2022, 10, 485. [Google Scholar] [CrossRef]
- Azami, H.; Fernandez, A.; Escudero, J. Multivariate Multiscale Dispersion Entropy of Biomedical Times Series. Entropy 2017, 21, 913. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Jiao, S.; Geng, B. Refined composite multiscale fluctuation-based dispersion Lempel–Ziv complexity for signal analysis. ISA Trans. 2023, 133, 273–284. [Google Scholar] [CrossRef]
- Ying, W.; Tong, J.; Dong, Z.; Pan, H.; Liu, Q.; Zheng, J. Composite Multivariate Multi-Scale Permutation Entropy and Laplacian Score Based Fault Diagnosis of Rolling Bearing. Entropy 2022, 24, 160. [Google Scholar] [CrossRef] [PubMed]
- Richman, J.S.; Moorman, J.R. Physiological Time-series Analysis Using Approximate Entropy and Sample Entropy. Am. J. Physiol.-Heart Circ. Physiol. 2000, 278, 2039–2049. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Zhuang, J.; Yu, W.; Wang, Z. Measuring complexity using FuzzyEn, ApEn, and SampEn. Med. Eng. Physics. 2009, 31, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Bandt, C.; Pompe, B. Permutation entropy: A natural complexity measure for time series. Phys. Rev. Lett. 2002, 88, 174102. [Google Scholar] [CrossRef] [PubMed]
- Rostaghi, M.; Azami, H. Dispersion Entropy: A Measure for Time Series Analysis. IEEE Signal Process. Lett. 2016, 23, 610–614. [Google Scholar] [CrossRef]
- Li, Y.; Geng, B.; Tang, B. Simplified coded dispersion entropy: A nonlinear metric for signal analysis. Nonlinear Dyn. 2023, 111, 9327–9344. [Google Scholar] [CrossRef]
- Li, Y.; Tang, B.; Jiao, S. SO-slope entropy coupled with SVMD: A novel adaptive feature extraction method for ship-radiated noise. Ocean Eng. 2023, 280, 114677. [Google Scholar] [CrossRef]
- Wang, X.; Si, S.; Li, Y. Variational Embedding Multiscale Diversity Entropy for Fault Diagnosis of Large-Scale Machinery. IEEE Trans. Ind. Electron. 2022, 69, 3109–3119. [Google Scholar] [CrossRef]
- Rostaghi, M.; Khatibi, M.M.; Ashory, M.R.; Azami, H. Fuzzy Dispersion Entropy: A Nonlinear Measure for Signal Analysis. IEEE Trans. Fuzzy Syst. 2022, 30, 3785–3796. [Google Scholar] [CrossRef]
- Li, Y.; Tang, B.; Geng, B.; Jiao, S. Fractional Order Fuzzy Dispersion Entropy and Its Application in Bearing Fault Diagnosis. Fractal Fract. 2022, 6, 544. [Google Scholar] [CrossRef]
- Costa, M.; Goldberger, A.; Peng, C. Multiscale entropy analysis of biological signals. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2005, 71, 021906. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Wu, C.; Lin, S. Analysis of complex time series using refined composite multiscale entropy—ScienceDirect. Phys. Lett. A 2014, 378, 1369–1374. [Google Scholar] [CrossRef]
- Wang, Z.; Shang, J. Generalized entropy plane based on multiscale weighted multivariate dispersion entropy for financial time series. Chaos Solitons Fractals 2021, 142, 110473. [Google Scholar] [CrossRef]
- Azami, H.; Rostaghi, M.; Abásolo, D.; Escudero, J. Refined Composite Multiscale Dispersion Entropy and its Application to Biomedical Signals. IEEE Trans. Biomed. Eng. 2017, 64, 2872–2879. [Google Scholar]
- Li, Y.; Lou, Y.; Liang, L.; Zhang, S. Research on Feature Extraction of Ship-Radiated Noise Based on Multiscale Fuzzy Dispersion Entropy. J. Mar. Sci. Eng. 2023, 11, 997. [Google Scholar] [CrossRef]
- Shi, J.; Su, Z.; Qin, H.; Shen, C.; Huang, W.; Zhu, Z. Generalized Variable-Step Multiscale Lempel-Ziv Complexity: A Feature Extraction Tool for Bearing Fault Diagnosis. IEEE Sens. J. 2022, 22, 15296–15305. [Google Scholar] [CrossRef]
- Azami, H.; Escudero, J. Refined composite multivariate generalized multiscale fuzzy entropy: A tool for complexity analysis of multichannel signals. Phys. A Stat. Mech. Its Appl. 2017, 465, 261–276. [Google Scholar] [CrossRef] [Green Version]
- Shao, S.; Mcaleer, S.; Yan, R. Highly accurate machine fault diagnosis using deep transfer learning. IEEE Trans. Ind. Inf. 2019, 15, 2446–2455. [Google Scholar] [CrossRef]
- Keller, J.M.; Gray, M.R.; Givens, J.A. A fuzzy K-nearest neighbor algorithm. IEEE Trans. Syst. Man Cybern. 1985, SMC-15, 580–585. [Google Scholar] [CrossRef]
- National Park Service. Available online: https://www.nps.gov/glba/learn/nature/soundcli-ps.htm (accessed on 8 May 2023).
Metric | p-Value |
---|---|
VSMFuzDE | 0.0029 |
RCMFuzDE | 7.853 |
MFuzDE | 0.0015 |
RCMDE | 0.2459 |
MDE | 0.3376 |
Metric | Scale Factor | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
VSMFuzDE | 57.6 | 53.4 | 53.4 | 48.0 | 54.8 | 68.4 | 79.0 | 82.2 | 75.8 | 70.0 |
RCMFuzDE | 57.6 | 33.0 | 32.0 | 34.6 | 37.4 | 46.0 | 45.0 | 39.6 | 34.4 | 25.4 |
MFuzDE | 57.6 | 32.8 | 30.0 | 26.8 | 35.6 | 47.6 | 41.0 | 30.8 | 27.8 | 25.0 |
RCMDE | 53.8 | 32.6 | 31.8 | 30.0 | 34.0 | 47.2 | 41.8 | 33.4 | 28.2 | 26.0 |
MDE | 53.8 | 34.2 | 26.4 | 25.4 | 34.2 | 39.0 | 33.0 | 27.0 | 26.8 | 21.6 |
Metric | ARR/SF | Number of Extracted Features | |||
---|---|---|---|---|---|
2 | 3 | 4 | 5 | ||
VSMFuzDE | ARR | 97.4 | 99.2 | 99.2 | 99.2 |
SF | (1, 7) | (1, 3, 8) | (1, 2, 3, 8) | (1, 2, 3, 4, 8) | |
RCMFuzDE | ARR | 77.0 | 88.2 | 91.8 | 92.4 |
SF | (1, 6) | (1, 2, 7) | (1, 2, 3, 6) | (1, 2, 3, 5, 6) | |
MFuzDE | ARR | 77.0 | 86.4 | 88.6 | 88.8 |
SF | (1, 7) | (1, 2, 6) | (1, 2, 3, 7) | (1, 2, 3, 4, 7) | |
RCMDE | ARR | 79.8 | 85.6 | 89.8 | 90.4 |
SF | (1, 7) | (1, 2, 7) | (1, 2, 4, 7) | (1, 2, 4, 5, 7) | |
MDE | ARR | 73.8 | 79.0 | 80.0 | 84.2 |
SF | (1, 7) | (1, 2, 6) | (1, 2, 5, 7) | (1, 2, 5, 7, 9) |
Metric | Scale Factor | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
VSMFuzDE | 72.25 | 76.5 | 74.75 | 66.00 | 76.50 | 78.5 | 79.50 | 78.25 | 81.5 | 78.25 |
RCMFuzDE | 72.25 | 73.5 | 70.25 | 70.00 | 68.25 | 66.25 | 64.25 | 63.25 | 57.75 | 51.25 |
MFuzDE | 72.25 | 70.25 | 68.00 | 67.00 | 65.00 | 64.50 | 59.50 | 58.25 | 55.25 | 52.75 |
RCMDE | 75.75 | 72.00 | 74.25 | 65.50 | 66.50 | 62.75 | 60.50 | 61.75 | 48.75 | 46.25 |
MDE | 75.25 | 70.50 | 68.75 | 69.00 | 64.75 | 62.25 | 55.25 | 44.75 | 45.75 | 39.50 |
Metric | ARR/SF | Number of Extracted Features | |||
---|---|---|---|---|---|
2 | 3 | 4 | 5 | ||
VSMFuzDE | ARR | 99.75 | 100 | 99.75 | 99.75 |
SF | (1, 3) | (1, 2, 3) | (1, 2, 3, 5) | (1, 2, 3, 4, 5) | |
RCMFuzDE | ARR | 99.00 | 99.75 | 99.75 | 99.75 |
SF | (1, 5) | (1, 3, 6) | (1, 2, 5, 7) | (1, 2, 3, 4, 6) | |
MFuzDE | ARR | 98.75 | 99.75 | 99.75 | 99.75 |
SF | (1, 3) | (1, 4, 8) | (1, 2, 3, 8) | (1, 2, 3, 5, 8) | |
RCMDE | ARR | 99.25 | 99.50 | 99.50 | 99.25 |
SF | (1, 3) | (1, 2, 3) | (1, 3, 9, 10) | (1, 2, 3, 4, 9) | |
MDE | ARR | 99.25 | 99.50 | 99.75 | 99.75 |
SF | (1, 3) | (1, 3, 8) | (1, 4, 8, 9) | (1, 2, 4, 8, 9) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Wu, J.; Zhang, S.; Tang, B.; Lou, Y. Variable-Step Multiscale Fuzzy Dispersion Entropy: A Novel Metric for Signal Analysis. Entropy 2023, 25, 997. https://doi.org/10.3390/e25070997
Li Y, Wu J, Zhang S, Tang B, Lou Y. Variable-Step Multiscale Fuzzy Dispersion Entropy: A Novel Metric for Signal Analysis. Entropy. 2023; 25(7):997. https://doi.org/10.3390/e25070997
Chicago/Turabian StyleLi, Yuxing, Junxian Wu, Shuai Zhang, Bingzhao Tang, and Yilan Lou. 2023. "Variable-Step Multiscale Fuzzy Dispersion Entropy: A Novel Metric for Signal Analysis" Entropy 25, no. 7: 997. https://doi.org/10.3390/e25070997
APA StyleLi, Y., Wu, J., Zhang, S., Tang, B., & Lou, Y. (2023). Variable-Step Multiscale Fuzzy Dispersion Entropy: A Novel Metric for Signal Analysis. Entropy, 25(7), 997. https://doi.org/10.3390/e25070997