Accelerating Quantum Decay by Multiple Tunneling Barriers
Abstract
:1. Introduction
2. Acceleration and Deceleration of Quantum Decay in the Double-Barrier Model: Some Preliminary Considerations
3. Decay Acceleration by Resonant Tunneling in Tight-Binding Lattices
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Fano–Anderson form of the Quantum Decay on the Lattice
Appendix B. Some Qualitative Properties of the Energy Spectrum and Weak Localization
References
- Merzbacher, E. The Early History of Quantum Tunneling. Phys. Today 2002, 55, 44. [Google Scholar] [CrossRef]
- Razavy, M. Quantum Theory of Tunneling; World Scientific: Singapore, 2003. [Google Scholar]
- Vorobeichik, I.; Narevicius, E.; Rosenblum, G.; Orenstein, M.; Moiseyev, N. Electromagnetic Realization of Orders-of-Magnitude Tunneling Enhancement in a Double Well System. Phys. Rev. Lett. 2003, 90, 176806. [Google Scholar] [CrossRef]
- Della Valle, G.; Ornigotti, M.; Cianci, E.; Foglietti, V.; Laporta, P.; Longhi, S. Visualization of Coherent Destruction of Tunneling in an Optical Double Well System. Phys. Rev. Lett. 2007, 98, 263601. [Google Scholar] [CrossRef]
- Longhi, S. Quantum-optical analogies using photonic structures. Laser Photon. Rev. 2009, 3, 243. [Google Scholar] [CrossRef]
- Geng, Z.; Maasilta, I.J. Complete tunneling of acoustic waves between piezoelectric crystals. Commun. Phys. 2023, 6, 178. [Google Scholar] [CrossRef]
- Gamow, G. Zur Quantentheorie des Atomkernes. Zeit. Phys. 1928, 51, 204. [Google Scholar] [CrossRef]
- Gurney, R.W.; Condon, E.U. Quantum Mechanics and Radioactive Disintegration. Nature 1928, 122, 439. [Google Scholar] [CrossRef]
- Klaiman, S.; Gilary, I. On Resonance: A First Glance into the Behavior of Unstable States. Adv. Quantum Chem. 2012, 63, 1. [Google Scholar]
- García-Calderón, G. Theory of resonant states: And exact analytical approach for open quantum systems. Adv. Quantum Chem. 2010, 60, 407. [Google Scholar]
- Jakobovits, H.; Rothschild, Y.; Levitan, J. The approximation to the exponential decay law. Am. J. Phys. 1995, 63, 439. [Google Scholar] [CrossRef]
- Moiseyev, N. Quantum theory of resonances: Calculating energies, widths and cross-sections by complex scaling. Phys. Rep. 1998, 302, 211. [Google Scholar] [CrossRef]
- del Campo, A.; García-Calderòn, G.; Muga, J.G. Quantum transients. Phys. Rep. 2009, 476, 1. [Google Scholar] [CrossRef]
- Gadella, M.; Fortin, S.; Jorge, J.P.; Losada, M. Mathematical Models for Unstable Quantum Systems and Gamow States. Entropy 2022, 24, 804. [Google Scholar] [CrossRef]
- Winter, R.G. Evolution of a Quasi-Stationary State. Phys. Rev. 1961, 123, 1503. [Google Scholar] [CrossRef]
- Fonda, L.; Ghirardi, G.C.; Rimini, A. Decay theory of unstable quantum systems. Rep. Prog. Phys. 1978, 41, 587. [Google Scholar] [CrossRef]
- Nakazato, H.; Namiki, M.; Pascazio, S. Temporal behavior of quantum mechanical systems. Int. J. Mod. Phys. B 1996, 10, 247. [Google Scholar] [CrossRef]
- Wilkinson, S.R.; Bharucha, C.F.; Fischer, M.C.; Madison, K.W.; Morrow, P.R.; Niu, Q.; Sundaram, B.; Raizen, M.G. Experimental evidence for non-exponential decay in quantum tunnelling. Nature 1997, 387, 575. [Google Scholar] [CrossRef]
- Torrontegui, E.; Muga, J.G.; Martorell, J.; Sprung, D.W.L. Quantum Decay at Long Times. Adv. Quantum Chem. 2010, 60, 485. [Google Scholar]
- Peshkin, M.; Volya, A.; Zelevinsky, V. Non-exponential and oscillatory decays in quantum mechanics. EPL 2014, 107, 40001. [Google Scholar] [CrossRef]
- Misra, B.; Sudarshan, E.C.G. Zeno paradox in quantum dynamics. J. Math. Phys. 1977, 18, 756. [Google Scholar] [CrossRef]
- Kofman, A.G.; Kurizki, G. Acceleration of quantum decay processes by frequent observations. Nature 2000, 405, 546. [Google Scholar] [CrossRef]
- Fischer, M.C.; Gutiérrez-Medina, B.; Raizen, M.G. Observation of the Quantum Zeno and Anti-Zeno Effects in an Unstable System. Phys. Rev. Lett. 2001, 87, 040402. [Google Scholar] [CrossRef]
- Facchi, P.; Nakazato, H.; Pascazio, S. From the Quantum Zeno to the Inverse Quantum Zeno Effect. Phys. Rev. Lett. 2001, 86, 2699. [Google Scholar] [CrossRef] [PubMed]
- Kofman, A.G.; Kurizki, G. Universal Dynamical Control of Quantum Mechanical Decay: Modulation of the Coupling to the Continuum. Phys. Rev. Lett. 2001, 87, 270405. [Google Scholar] [CrossRef] [PubMed]
- Gaveau, B.; Schulman, L.S. Limited quantum decay. J. Phys. A Math. Gen. 1995, 28, 7359. [Google Scholar] [CrossRef]
- Lorenzo, S.; Ciccarello, F.; Palma, G.M. Non-Markovian dynamics from band edge effects and static disorder. Int. J. Quantum Inform. 2017, 15, 1740026. [Google Scholar] [CrossRef]
- Lorenzo, S.; Lombardo, F.; Ciccarello, F.; Palma, G.M. Quantum non-Markovianity induced by Anderson localization. Sci. Rep. 2017, 7, 42729. [Google Scholar] [CrossRef]
- Rojas-Molina, C. Random Schrödinger operators and Anderson localization in aperiodic media. Rev. Math. Phys. 2020, 32, 2060010. [Google Scholar] [CrossRef]
- Herrera-González, I.F.; Izrailev, F.M.; Makarov, N.M. Resonant enhancement of Anderson localization: Analytical approach. Phys. Rev. E 2013, 88, 052108. [Google Scholar] [CrossRef]
- Giorgi, G.L.; Lorenzo, S.; Longhi, S. Topological Protection and Control of Quantum Markovianity. Photonics 2020, 7, 18. [Google Scholar] [CrossRef]
- Longhi, S. Nonexponential Decay Via Tunneling in Tight-Binding Lattices and the Optical Zeno Effect. Phys. Rev. Lett. 2006, 97, 110402. [Google Scholar] [CrossRef]
- Dreisow, F.; Szameit, A.; Heinrich, M.; Pertsch, T.; Nolte, S.; Tünnermann, A.; Longhi, S. Decay Control via Discrete-to-Continuum Coupling Modulation in an Optical Waveguide System. Phys. Rev. Lett. 2008, 101, 143602. [Google Scholar] [CrossRef]
- Biagioni, P.; Della Valle, G.; Ornigotti, M.; Finazzi, M.; Duó, L.; Laporta, P.; Longhi, S. Experimental demonstration of the optical Zeno effect by scanning tunneling optical microscopy. Opti. Express 2008, 16, 3762. [Google Scholar] [CrossRef]
- Longhi, S.; Laporta, P.; Belmonte, M.; Recami, E. Measurement of superluminal optical tunneling times in double-barrier photonic band gaps. Phys. Rev. E 2002, 65, 046610. [Google Scholar] [CrossRef]
- Longhi, S. Classical simulation of relativistic quantum mechanics in periodic optical structures. Appl. Phys. B 2011, 104, 453. [Google Scholar] [CrossRef]
- Janner, D.; Galzerano, G.; Della Valle, G.; Laporta, P.; Longhi, S.; Belmonte, M. Slow light in periodic superstructure Bragg gratings. Phys. Rev. E 2005, 72, 056605. [Google Scholar] [CrossRef] [PubMed]
- Le Deunff, J.; Brodier, O.; Mouchet, A. A primer for resonant tunnelling. Eur. J. Phys. 2012, 33, 1771. [Google Scholar] [CrossRef]
- Kronig, R.d.L.; Penney, W.G. Quantum Mechanics of Electrons in Crystal Lattices. Proc. Roy. Soc. A 1930, 130, 499. [Google Scholar]
- Kittel, C. Introduction to Solid State Physics, 8th ed.; Wiley: New York, NY, USA, 2005. [Google Scholar]
- Dunlap, D.H.; Kenkre, V.M. Dynamic localization of a charged particle moving under the influence of an electric field. Phys. Rev. B 1986, 34, 3625. [Google Scholar] [CrossRef] [PubMed]
- Cuevas, F.A.; Curilef, S.; Plastino, A.R. Spread of highly localized wave-packet in the tight-binding lattice: Entropic and information-theoretical characterization. Ann. Phys. 2011, 326, 2834. [Google Scholar] [CrossRef]
- Longhi, S. Tunneling escape in optical waveguide arrays with a boundary defect. Phys. Rev. E 2006, 74, 026602. [Google Scholar] [CrossRef]
- Longhi, S. Photonic simulation of giant atom decay. Opt. Lett. 2020, 45, 3017. [Google Scholar] [CrossRef]
- Crespi, A.; Pepe, F.V.; Facchi, P.; Sciarrino, F.; Mataloni, P.; Nakazato, H.; Pascazio, S.; Osellame, R. Experimental Investigation of Quantum Decay at Short, Intermediate, and Long Times via Integrated Photonics. Phys. Rev. Lett. 2019, 122, 130401. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, W.; Ziegler, K.; Chen, F. Engineering of Zeno Dynamics in Integrated Photonics. Phys. Rev. Lett. 2023, 130, 103801. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, S.K.; Zhuravitskii, S.A.; Skryabin, N.N.; Dyakonov, I.V.; Kalinkin, A.A.; Kulik, S.P.; Kartashov, Y.V.; Konotop, V.V.; Zadkov, V.N. Macroscopic Zeno effect in Su-Schrieffer-Heeger photonic topological insulator. arXiv 2023, arXiv:2308.00523. [Google Scholar] [CrossRef]
- Sudarshan, G. Field Theory, Quantization and Statistical Physics; Tirapegui, E., Ed.; Reidel: Dordrecht, The Netherland, 1988; pp. 237–245. [Google Scholar]
- Longhi, S. Bound states in the continuum in a single-level Fano-Anderson model. Eur. Phys. J. B 2007, 57, 45. [Google Scholar] [CrossRef]
- Morandotti, R.; Peschel, U.; Aitchison, J.S.; Eisenberg, H.S.; Silberberg, Y. Experimental Observation of Linear and Nonlinear Optical Bloch Oscillations. Phys. Rev. Lett. 1999, 83, 4756. [Google Scholar] [CrossRef]
- Longhi, S. Optical analogue of coherent population trapping via a continuum in optical waveguide arrays. J. Mod. Opt. 2009, 56, 729. [Google Scholar] [CrossRef]
- Carmona, R.; Klein, A.; Martinelli, F. Anderson Localization for Bernoulli and Other Singular Potentials. Commun. Math. Phys. 1987, 108, 41. [Google Scholar] [CrossRef]
- Longhi, S. Absence of mobility edges in mosaic Wannier-Stark lattices. Phys. Rev. B 2023, 108, 064206. [Google Scholar] [CrossRef]
- He, J.; Xia, X. Arithmetic phase transitions for mosaic Maryland model. J. Math. Phys. 2023, 64, 043504. [Google Scholar] [CrossRef]
- Matsuda, H.; Ishii, K. Localization of Normal Modes and Energy Transport in the Disordered Harmonic Chain. Suppl. Prog. Theor. Phys. 1970, 45, 56. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinotti, E.; Longhi, S. Accelerating Quantum Decay by Multiple Tunneling Barriers. Entropy 2023, 25, 1345. https://doi.org/10.3390/e25091345
Pinotti E, Longhi S. Accelerating Quantum Decay by Multiple Tunneling Barriers. Entropy. 2023; 25(9):1345. https://doi.org/10.3390/e25091345
Chicago/Turabian StylePinotti, Ermanno, and Stefano Longhi. 2023. "Accelerating Quantum Decay by Multiple Tunneling Barriers" Entropy 25, no. 9: 1345. https://doi.org/10.3390/e25091345
APA StylePinotti, E., & Longhi, S. (2023). Accelerating Quantum Decay by Multiple Tunneling Barriers. Entropy, 25(9), 1345. https://doi.org/10.3390/e25091345