Fine-Grained Radio Frequency Fingerprint Recognition Network Based on Attention Mechanism
Abstract
:1. Introduction
- Because the differences between emitters are fairly subtle, especially for transmitters of the same model produced in the same batch by the same manufacturer, the inter-class variation in RF fingerprints is low.
- RF fingerprints are unintentional and weak modulations that are incidental to the transmitted signal. They are susceptible to complex channel conditions, multi-path effects, and environmental noise. As a result, large intra-class variation exists in the RF fingerprints of the same device.
- We propose a fine-grained RF fingerprint recognition network that generates pyramidal features by establishing a top-down feature pathway hierarchy on the basic network. Those feature maps are further refined by the attention module and are integrated to learn fine-grained features. To the best of our knowledge, we are the first to combine fine-grained recognition with RF fingerprint identification tasks.
- We combine spatial attention and channel attention and propose a novel second-order attention module. It sequentially infers the attention map along two independent dimensions: channel and space. Subsequently, the attention map is multiplied by the input feature map to localize significant regions, enabling the learning of fine-grained and discriminative features.
- In contrast to the conventional approach of element-wise summation or concatenation used in previous studies to fuse multi-scale features, we propose the adaptive spatial feature fusion module (ASFFM) to adaptively integrate features from different scales. This allows for the fusion of high-level semantic features and low-level detailed features: ensuring that the fine-grained details are not lost and thus facilitating more accurate fine-grained recognition.
- We conduct extensive experiments on three challenging datasets including 100 ADS-B devices, 54 Zigbee devices, and 25 LoRa devices and achieve superior performance over the state-of-the-art approaches. A visualization and comprehensive experiments are further conducted to draw insights about our method.
2. Related Works
2.1. RF Fingerprint Recognition
2.1.1. Machine Learning
2.1.2. Deep Learning
2.2. Fine-Grained Recognition
3. Signal Model
3.1. RF Signal
3.2. DCTF
3.2.1. Differential Signal
3.2.2. Constellation Figure
3.2.3. Zigbee Examples
4. The Proposed Method
4.1. Data Sample
4.2. FGRFNet
4.3. CPAM
4.4. ASFFM
5. Experiments
5.1. Dataset
5.2. Implementation
5.3. Comparison and Discussion
5.4. Ablation Study
5.5. Impact of DCTF Generation Parameters
5.6. Impact of Distance
5.7. Impact of SNR
5.8. Visualization
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FGRFNet | Fine-grained RF Fingerprint Recognition Network |
DCTF | Differential Constellation Trace Figure |
CFO | Carrier Frequency Offset |
ICAO | International Civil Aviation Organization |
CPAM | Channel and Positional Attention Module |
ASFFM | Adaptive Spatial Feature Fusion Module |
References
- Al-Garadi, M.A.; Mohamed, A.; Al-Ali, A.K.; Du, X.; Ali, I.; Guizani, M. A survey of machine and deep learning methods for internet of things (IoT) security. IEEE Commun. Surv. Tutor. 2020, 22, 1646–1685. [Google Scholar] [CrossRef]
- Xie, N.; Li, Z.; Tan, H. A Survey of Physical-Layer Authentication in Wireless Communications. IEEE Commun. Surv. Tutor. 2021, 23, 282–310. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Li, J.; Song, H.; Yang, T.; Niu, S.; Ming, Z. Zero-bias deep learning for accurate identification of Internet-of-Things (IoT) devices. IEEE Internet Things J. 2020, 8, 2627–2634. [Google Scholar] [CrossRef]
- Zhang, J.; Woods, R.; Sandell, M.; Valkama, M.; Marshall, A.; Cavallaro, J. Radio Frequency Fingerprint Identification for Narrowband Systems, Modelling and Classification. IEEE Trans. Inf. Forensics Secur. 2021, 16, 3974–3987. [Google Scholar] [CrossRef]
- Soltanieh, N.; Norouzi, Y.; Yang, Y.; Karmakar, N.C. A review of radio frequency fingerprinting techniques. IEEE J. Radio Freq. Identif. 2020, 4, 222–233. [Google Scholar] [CrossRef]
- Rajendran, S.; Sun, Z. RF Impairment Model-Based IoT Physical-Layer Identification for Enhanced Domain Generalization. IEEE Trans. Inf. Forensics Secur. 2022, 17, 1285–1299. [Google Scholar] [CrossRef]
- Barbeau, M.; Hall, J.; Kranakis, E. Detection of rogue devices in bluetooth networks using radio frequency fingerprinting. In Proceedings of the 3rd IASTED International Conference on Communications and Computer Networks, CCN, Lima, Peru, 4–6 October 2006; pp. 4–6. [Google Scholar]
- Yuan, Y.; Huang, Z.; Wu, H.; Wang, X. Specific emitter identification based on Hilbert–Huang transform-based time–frequency–energy distribution features. IET Commun. 2014, 8, 2404–2412. [Google Scholar] [CrossRef]
- Satija, U.; Trivedi, N.; Biswal, G.; Ramkumar, B. Specific emitter identification based on variational mode decomposition and spectral features in single hop and relaying scenarios. IEEE Trans. Inf. Forensics Secur. 2018, 14, 581–591. [Google Scholar] [CrossRef]
- Brik, V.; Banerjee, S.; Gruteser, M.; Oh, S. Wireless device identification with radiometric signatures. In Proceedings of the 14th ACM International Conference on Mobile Computing and Networking, San Francisco, CA, USA, 8–12 September 2008; pp. 116–127. [Google Scholar]
- Danev, B.; Heydt-Benjamin, T.S.; Capkun, S. Physical-layer Identification of RFID Devices. In Proceedings of the USENIX Security Symposium, Montreal, QC, Canada, 10–14 August 2009; pp. 199–214. [Google Scholar]
- Peng, L.; Hu, A.; Zhang, J.; Jiang, Y.; Yu, J.; Yan, Y. Design of a hybrid RF fingerprint extraction and device classification scheme. IEEE Internet Things J. 2018, 6, 349–360. [Google Scholar] [CrossRef]
- Williams, M.D.; Temple, M.A.; Reising, D.R. Augmenting bit-level network security using physical layer RF-DNA fingerprinting. In Proceedings of the 2010 IEEE Global Telecommunications Conference GLOBECOM 2010, Miami, FL, USA, 6–10 December 2010; pp. 1–6. [Google Scholar]
- Sankhe, K.; Belgiovine, M.; Zhou, F.; Riyaz, S.; Ioannidis, S.; Chowdhury, K. ORACLE: Optimized radio classification through convolutional neural networks. In Proceedings of the IEEE INFOCOM 2019-IEEE Conference on Computer Communications, Paris, France, 29 April–2 May 2019; pp. 370–378. [Google Scholar]
- Soltani, N.; Reus-Muns, G.; Salehi, B.; Dy, J.; Ioannidis, S.; Chowdhury, K. RF fingerprinting unmanned aerial vehicles with non-standard transmitter waveforms. IEEE Trans. Veh. Technol. 2020, 69, 15518–15531. [Google Scholar] [CrossRef]
- Jian, T.; Rendon, B.C.; Ojuba, E.; Soltani, N.; Wang, Z.; Sankhe, K.; Gritsenko, A.; Dy, J.; Chowdhury, K.; Ioannidis, S. Deep learning for RF fingerprinting: A massive experimental study. IEEE Internet Things Mag. 2020, 3, 50–57. [Google Scholar] [CrossRef]
- Zong, L.; Xu, C.; Yuan, H. A RF fingerprint recognition method based on deeply convolutional neural network. In Proceedings of the 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China, 12–14 June 2020; pp. 1778–1781. [Google Scholar]
- Jagannath, A.; Kane, Z.; Jagannath, J. RF Fingerprinting Needs Attention: Multi-task Approach for Real-World WiFi and Bluetooth. arXiv 2022, arXiv:2209.03142. [Google Scholar]
- Zhang, W.; Zhao, W.; Tan, X.; Shao, L.; Ran, C. Adaptive RF Fingerprints Fusion via Dual Attention Convolutions. IEEE Internet Things J. 2022, 9, 25181–25195. [Google Scholar] [CrossRef]
- Roy, D.; Mukherjee, T.; Chatterjee, M.; Pasiliao, E. Detection of rogue RF transmitters using generative adversarial nets. In Proceedings of the 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh, Morocco, 15–18 April 2019; pp. 1–7. [Google Scholar]
- An, Z.; Zhang, T.; Shen, M.; De Carvalho, E.; Ma, B.; Yi, C.; Song, T. Series-constellation feature based blind modulation recognition for beyond 5G MIMO-OFDM systems with channel fading. IEEE Trans. Cogn. Commun. Netw. 2022, 8, 793–811. [Google Scholar] [CrossRef]
- Qi, P.; Zhou, X.; Zheng, S.; Li, Z. Automatic modulation classification based on deep residual networks with multimodal information. IEEE Trans. Cogn. Commun. Netw. 2021, 7, 21–33. [Google Scholar] [CrossRef]
- Jagannath, A.; Jagannath, J.; Kumar, P.S.P.V. A comprehensive survey on radio frequency (RF) fingerprinting: Traditional approaches, deep learning, and open challenges. Comput. Netw. 2022, 219, 109455. [Google Scholar] [CrossRef]
- Ding, Y.; Ma, Z.; Wen, S.; Xie, J.; Chang, D.; Si, Z.; Wu, M.; Ling, H. AP-CNN: Weakly supervised attention pyramid convolutional neural network for fine-grained visual classification. IEEE Trans. Image Process. 2021, 30, 2826–2836. [Google Scholar] [CrossRef]
- Kumar, Y.; Sheoran, M.; Jajoo, G.; Yadav, S.K. Automatic Modulation Classification Based on Constellation Density Using Deep Learning. IEEE Commun. Lett. 2020, 24, 1275–1278. [Google Scholar] [CrossRef]
- Yang, S.; Liu, S.; Yang, C.; Wang, C. Re-rank coarse classification with local region enhanced features for fine-grained image recognition. arXiv 2021, arXiv:2102.09875. [Google Scholar]
- Ge, W.; Lin, X.; Yu, Y. Weakly supervised complementary parts models for fine-grained image classification from the bottom up. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 3034–3043. [Google Scholar]
- Zheng, H.; Fu, J.; Zha, Z.J.; Luo, J. Looking for the devil in the details: Learning trilinear attention sampling network for fine-grained image recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 5012–5021. [Google Scholar]
- Zhuang, P.; Wang, Y.; Qiao, Y. Learning attentive pairwise interaction for fine-grained classification. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 13130–13137. [Google Scholar]
- Ji, R.; Wen, L.; Zhang, L.; Du, D.; Wu, Y.; Zhao, C.; Liu, X.; Huang, F. Attention convolutional binary neural tree for fine-grained visual categorization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10468–10477. [Google Scholar]
- Chang, D.; Ding, Y.; Xie, J.; Bhunia, A.K.; Li, X.; Ma, Z.; Wu, M.; Guo, J.; Song, Y.Z. The devil is in the channels: Mutual-channel loss for fine-grained image classification. IEEE Trans. Image Process. 2020, 29, 4683–4695. [Google Scholar] [CrossRef]
- Lin, T.Y.; RoyChowdhury, A.; Maji, S. Bilinear convolutional neural networks for fine-grained visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 1309–1322. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Zhang, J.; Liu, M.; Hu, A. Deep Learning Based RF Fingerprint Identification Using Differential Constellation Trace Figure. IEEE Trans. Veh. Technol. 2020, 69, 1091–1095. [Google Scholar] [CrossRef]
- Fu, J.; Liu, J.; Tian, H.; Li, Y.; Bao, Y.; Fang, Z.; Lu, H. Dual Attention Network for Scene Segmentation. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 3141–3149. [Google Scholar] [CrossRef]
- Zheng, H.; Fu, J.; Mei, T.; Luo, J. Learning multi-attention convolutional neural network for fine-grained image recognition. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 5209–5217. [Google Scholar]
- Zhang, H.; Goodfellow, I.; Metaxas, D.; Odena, A. Self-attention generative adversarial networks. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 7354–7363. [Google Scholar]
- Wang, X.; Girshick, R.; Gupta, A.; He, K. Non-local neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7794–7803. [Google Scholar]
- Si, W.; Luo, J.; Deng, Z. Multi-label hybrid radar signal recognition based on a feature pyramid network and class activation mapping. IET Radar Sonar Navig. 2022, 16, 786–798. [Google Scholar] [CrossRef]
- Chen, T.; Gao, S.; Zheng, S.; Yu, S.; Xuan, Q.; Lou, C.; Yang, X. EMD and VMD Empowered Deep Learning for Radio Modulation Recognition. IEEE Trans. Cogn. Commun. Netw. 2023, 9, 43–57. [Google Scholar] [CrossRef]
- Wu, W.; Hu, S.; Lin, D.; Liu, Z. DSLN: Securing Internet of Things Through RF Fingerprint Recognition in Low-SNR Settings. IEEE Internet Things J. 2022, 9, 3838–3849. [Google Scholar] [CrossRef]
- Liu, S.; Huang, D.; Wang, Y. Learning spatial fusion for single-shot object detection. arXiv 2019, arXiv:1911.09516. [Google Scholar]
- Liu, Y.; Wang, J.; Niu, S.; Song, H. ADS-B signals records for non-cryptographic identification and incremental learning. IEEE Dataport 2021. [Google Scholar] [CrossRef]
- IEEE Std 802.15.4-2020 (Revision of IEEE Std 802.15.4-2015); IEEE Standard for Low-Rate Wireless Networks. IEEE: Piscataway, NJ, USA, 2020; pp. 1–800. [CrossRef]
- Elmaghbub, A.; Hamdaoui, B. Comprehensive RF dataset collection and release: A deep learning-based device fingerprinting use case. In Proceedings of the 2021 IEEE Globecom Workshops (GC Wkshps), Madrid, Spain, 7–11 December 2021; pp. 1–7. [Google Scholar]
- Yin, Z.; Chen, B.; Zhen, W.; Wang, C.; Zhang, T. The Performance Analysis of Signal Recognition Using Attention Based CNN Method. IEEE Access 2020, 8, 214915–214922. [Google Scholar] [CrossRef]
- Peng, S.; Jiang, H.; Wang, H.; Alwageed, H.; Zhou, Y.; Sebdani, M.M.; Yao, Y.D. Modulation Classification Based on Signal Constellation Diagrams and Deep Learning. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 718–727. [Google Scholar] [CrossRef]
- Du, R.; Chang, D.; Bhunia, A.K.; Xie, J.; Ma, Z.; Song, Y.Z.; Guo, J. Fine-grained visual classification via progressive multi-granularity training of jigsaw patches. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 153–168. [Google Scholar]
- Liu, Y.; Wang, J.; Li, J.; Niu, S.; Song, H. Class-incremental learning for wireless device identification in IoT. IEEE Internet Things J. 2021, 8, 17227–17235. [Google Scholar] [CrossRef]
- Ran, X.; Yan, T.; Cai, T. MobileNet for Differential Constellation Trace Figure. In Proceedings of the 2021 13th International Conference on Communication Software and Networks (ICCSN), Chongqing, China, 4–7 June 2021; pp. 168–172. [Google Scholar] [CrossRef]
- Luo, W.; Zhang, H.; Li, J.; Wei, X.S. Learning semantically enhanced feature for fine-grained image classification. IEEE Signal Process. Lett. 2020, 27, 1545–1549. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhang, M.; Han, F.; Gong, Y.; Zhang, J. Spectrum Analysis and Convolutional Neural Network for Automatic Modulation Recognition. IEEE Wirel. Commun. Lett. 2019, 8, 929–932. [Google Scholar] [CrossRef]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar]
Method | Backbone | Accuracy (%) | F1-Score | AUC |
---|---|---|---|---|
PMG [47] | - | 79.18 | 0.7891 | 0.9734 |
CNN [33] | - | 79.37 | 0.7905 | 0.9866 |
AlexNet [46] | - | 82.35 | 0.8225 | 0.9837 |
API-Net [29] | ResNet-101 | 82.73 | 0.8192 | 0.9879 |
CSIL [48] | - | 83.50 | 0.8324 | 0.9882 |
ACNet [30] | ResNet-50 | 84.41 | 0.8326 | 0.9881 |
MobileNetV3-Large [49] | - | 85.29 | 0.8516 | 0.9884 |
ResNet-50 [25] | - | 85.03 | 0.8480 | 0.9896 |
ResNet-101 [25] | - | 86.20 | 0.8603 | 0.9899 |
SEF [50] | ResNet-50 | 86.99 | 0.8682 | 0.9923 |
ICAM [45] | ResNet-50 | 87.41 | 0.8732 | 0.9925 |
GoogLenet [46] | - | 87.76 | 0.8767 | 0.9957 |
ours | ResNet-50 | 89.24 | 0.8913 | 0.9984 |
ours | ResNet-101 | 89.86 | 0.8982 | 0.9989 |
Method | Backbone | Accuracy (%) | F1-Score | AUC | |||
---|---|---|---|---|---|---|---|
Zigbee | LoRa | Zigbee | LoRa | Zigbee | LoRa | ||
CNN [33] | - | 97.63 | 67.20 | 0.9759 | 0.6673 | 0.9996 | 0.9633 |
SCNN [51] | - | 96.83 | 76.45 | 0.9663 | 0.7611 | 0.9997 | 0.9845 |
AlexNet [46] | - | 96.22 | 61.65 | 0.9590 | 0.5981 | 0.9993 | 0.9569 |
GoogLenet [46] | - | 97.78 | 78.80 | 0.9758 | 0.7846 | 0.9994 | 0.9821 |
ResNet-50 [25] | - | 98.16 | 78.35 | 0.9812 | 0.7813 | 0.9996 | 0.9855 |
ICAM [45] | ResNet-50 | 98.99 | 81.40 | 0.9898 | 0.8104 | 0.9997 | 0.9883 |
MobileNetV3 [49] | - | 98.64 | 80.45 | 0.9863 | 0.8051 | 0.9997 | 0.9886 |
ARFNet [19] | ResNet-50 | 98.35 | 79.41 | 0.9830 | 0.9996 | 0.7929 | 0.9865 |
ours | ResNet-50 | 99.57 | 83.00 | 0.9957 | 0.8294 | 0.9999 | 0.9915 |
Method | Accuracy (%) | ||
---|---|---|---|
ADS-B | Zigbee | LoRa | |
Backbone | 85.03 | 98.16 | 78.35 |
Backbone + CAM | 87.14 | 98.26 | 81.10 |
Backbone + PAM | 86.26 | 98.30 | 80.75 |
Backbone + CPAM | 87.84 | 98.93 | 82.05 |
Method | Accuracy (%) | ||
---|---|---|---|
ADS-B | Zigbee | LoRa | |
Backbone | 85.03 | 98.16 | 78.35 |
Backbone + CPAM | 87.84 | 98.93 | 82.05 |
Backbone + ASFFM | 87.46 | 98.57 | 81.55 |
Backbone + CPAM + ASFFM | 89.24 | 99.57 | 83.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Hu, J.; Jiang, R.; Lin, Z.; Chen, Z. Fine-Grained Radio Frequency Fingerprint Recognition Network Based on Attention Mechanism. Entropy 2024, 26, 29. https://doi.org/10.3390/e26010029
Zhang Y, Hu J, Jiang R, Lin Z, Chen Z. Fine-Grained Radio Frequency Fingerprint Recognition Network Based on Attention Mechanism. Entropy. 2024; 26(1):29. https://doi.org/10.3390/e26010029
Chicago/Turabian StyleZhang, Yulan, Jun Hu, Rundong Jiang, Zengrong Lin, and Zengping Chen. 2024. "Fine-Grained Radio Frequency Fingerprint Recognition Network Based on Attention Mechanism" Entropy 26, no. 1: 29. https://doi.org/10.3390/e26010029
APA StyleZhang, Y., Hu, J., Jiang, R., Lin, Z., & Chen, Z. (2024). Fine-Grained Radio Frequency Fingerprint Recognition Network Based on Attention Mechanism. Entropy, 26(1), 29. https://doi.org/10.3390/e26010029