Electrodynamics of Superconductors: From Lorentz to Galilei at Zero Temperature
Abstract
:1. Introduction
2. Relativistic Cooper Pairs and Minimal Coupling
3. From Lorentz to Galilei
4. Density-Phase Lagrangian
4.1. Including the Ion Background
4.2. Charge Density and Current Density
4.3. London Penetration Depth for the Static Magnetic Field
4.4. London Penetration Depth for the Static Electric Field
4.5. Modified D’Alembert Equation for Electromagnetic Waves
5. Euler–Lagrange Equations of Superconductors
5.1. Gapless Collective Modes of Neutral Superfluids
5.2. Gapped Collective Modes of Charged Superfluids
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Govaerts, J.; Bertrand, D.; Stenuit, G. On electric fields in low temperature superconductors. Supercond. Sci. Technol. 2001, 14, 463. [Google Scholar] [CrossRef]
- Hirsch, J.E. Electrodynamics of superconductors. Phys. Rev. B 2004, 69, 214515. [Google Scholar] [CrossRef]
- Tajmar, M. Electrodynamics in superconductors explained by Proca equations. Phys. Lett. A 2008, 372, 3289–3291. [Google Scholar] [CrossRef]
- Hirsch, J.E. Proposed experimental test of an alternative electrodynamic theory of superconductors. Phys. C 2015, 508, 21–24. [Google Scholar] [CrossRef]
- Grigorishin, K.V. Extended time-dependent ginzburg–landau theory. J. Low Temp. Phys. 2021, 203, 262–308. [Google Scholar] [CrossRef]
- Nambu, Y. Quasi-particles and gauge invariance in the theory of superconductivity. Phys. Rev. 1960, 117, 648. [Google Scholar] [CrossRef]
- Goldstone, J. Field theories with «Superconductor» solutions. Il Nuovo Cim. (1955–1965) 1961, 19, 154–164. [Google Scholar] [CrossRef]
- Popov, V.N. Hydrodynamic Hamiltonian for a nonideal Bose gas. Theor. Math. Phys. 1972, 11, 236–247. [Google Scholar] [CrossRef]
- Popov, V.N. Functional Integrals in Quantum Field Theory and Statistical Physics; Reidel: Hong Kong, China, 1983. [Google Scholar]
- Greiter, M.; Wilczek, F.; Witten, E. Hydrodynamic relations in superconductivity. Mod. Phys. Lett. B 1989, 3, 903. [Google Scholar] [CrossRef]
- Schakel, A.M.J. On the effective theory of a BCS system at zero temperature. Mod. Phys. Lett. B 1990, 4, 927. [Google Scholar] [CrossRef]
- Schakel, A.M.J. Effective theory of bosonic superfluids. Mod. Phys. Lett. B 1994, 8, 2021–2039. [Google Scholar] [CrossRef]
- Aitchison, I.J.R.; Ao, P.; Thouless, D.J.; Zhu, X.-M. Effective Lagrangians for BCS superconductors at T = 0. Phys. Rev. B 1995, 51, 6531. [Google Scholar] [CrossRef]
- Son, D.T.; Wingate, M. General coordinate invariance and conformal invariance in nonrelativistic physics: Unitary Fermi gas. Ann. Phys. 2006, 321, 197–224. [Google Scholar] [CrossRef]
- Schakel, A.M.J. Boulevard of Broken Symmetries; World Scientific: Singapore, 2008. [Google Scholar]
- Salasnich, L.; Toigo, F. Extended Thomas-Fermi density functional for the unitary Fermi gas. Phys. Rev. A 2008, 78, 053626. [Google Scholar] [CrossRef]
- Salasnich, L. Hydrodynamics of Bose and Fermi superfluids at zero temperature: The superfluid nonlinear Schrodinger equation. Laser Phys. 2009, 19, 642–646. [Google Scholar] [CrossRef]
- Salasnich, L.; Comaron, P.; Zambon, M.; Toigo, F. Collective modes in the anisotropic unitary Fermi gas and the inclusion of a backflow term. Phys. Rev. A 2013, 88, 033610. [Google Scholar] [CrossRef]
- Maldonado, T.J.; Pham, D.N.; Amaolo, A.; Rodriguez, A.W.; Türeci, H. Negative electrohydrostatic pressure between superconducting bodies. arXiv 2023, arXiv:2307.04903. [Google Scholar]
- Ashcroft, N.W.; Mermin, N.D. Solid State Physics; Cengage: Boston, MA, USA, 2003. [Google Scholar]
- Annett, J. Superconductivity, Superfluids and Condensates; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- De Gennes, P.G. Superconductivity of Metals and Alloy; Westview Press: Boulder, CO, USA, 1999. [Google Scholar]
- Ketterson, J.B.; Song, S.N. Superconductivity; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Bjorken, J.D.; Drell, S.D. Relativistic Quantum Mechanics; McGraw-Hill: New York, NY, USA, 1964. [Google Scholar]
- Klein, O. Quantentheorie und funfdimensionale Relativitatstheorie. Z. Phys. 1926, 37, 895–906. [Google Scholar] [CrossRef]
- Gordon, W. Der Comptoneffekt nach der Schrödingerschen Theorie. Z. Phys. 1926, 40, 117–133. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Fluid Mechanics; Volume 6 of Course of Theoretical Physics; Pergamon Press: Oxford, UK, 1987. [Google Scholar]
- Leggett, A.J. Quantum Liquids; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Von Weizsäcker, C.F. Zur Theorie der Kernmassen. Z. Phys. 1935, 96, 431–458. [Google Scholar] [CrossRef]
- London, F.; London, H. The electromagnetic equations of the supraconductor. Proc. Roy. Soc. A 1935, 149, 71–88. [Google Scholar]
- London, H. An Experimental Examination of the Electrostatic Behaviour of Supraconductors. Proc. Roy. Soc. A 1936, 155, 102–110. [Google Scholar] [CrossRef]
- London, F. Superfluids; Dover: New York, NY, USA, 1961. [Google Scholar]
- Jackson, J.D. Classical Electrodynamics; Wiley: Hoboken, NJ, USA, 1998. [Google Scholar]
- Meissner, W.; Ochsenfeld, R. Ein neuer Effekt bei Eintritt der Supraleitfahigkeit. Naturwissenschaften 1933, 21, 787–788. [Google Scholar] [CrossRef]
- Anderson, P.W. Plasmons, Gauge Invariance, and Mass. Phys. Rev. 1962, 130, 439. [Google Scholar]
- Higgs, P.W. Broken Symmetries and the Masses of Gauge Bosons. Phys. Rev. Lett. 1962, 13, 508. [Google Scholar] [CrossRef]
- Englert, F.; Brout, R. Broken Symmetry and the Mass of Gauge Vector Mesons. Phys. Rev. Lett. 1964, 13, 321. [Google Scholar] [CrossRef]
- Bogoliubov, N.N. On the theory of superfluidity. J. Phys. (USSR) 1947, 11, 23. [Google Scholar]
- Larkin, A.; Varlamov, A. Theory of Fluctuations in Superconductors; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Svistunov, B.; Babaev, E.; Prokof’ev, N. Superfluid States of Matter; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Peronio, A.; Giessibl, F.J. Attempts to test an alternative electrodynamic theory of superconductors by low-temperature scanning tunneling and atomic force microscopy. Phys. Rev. B 2016, 94, 094503. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salasnich, L. Electrodynamics of Superconductors: From Lorentz to Galilei at Zero Temperature. Entropy 2024, 26, 69. https://doi.org/10.3390/e26010069
Salasnich L. Electrodynamics of Superconductors: From Lorentz to Galilei at Zero Temperature. Entropy. 2024; 26(1):69. https://doi.org/10.3390/e26010069
Chicago/Turabian StyleSalasnich, Luca. 2024. "Electrodynamics of Superconductors: From Lorentz to Galilei at Zero Temperature" Entropy 26, no. 1: 69. https://doi.org/10.3390/e26010069
APA StyleSalasnich, L. (2024). Electrodynamics of Superconductors: From Lorentz to Galilei at Zero Temperature. Entropy, 26(1), 69. https://doi.org/10.3390/e26010069