Multi-Additivity in Kaniadakis Entropy
Abstract
:1. Introduction
2. Mathematical Background
3. Multi-Additivity in Kaniadakis Entropy
4. A Numerical Example: The Gibbs-Like Distribution
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kaniadakis, G. Non-linear kinetics underlying generalized statistics. Physical A 2001, 296, 405–425. [Google Scholar] [CrossRef]
- Kaniadakis, G. Statistical mechanics in the context of special relativity. Phys. Rev. E 2002, 66, 056125. [Google Scholar] [CrossRef] [PubMed]
- Kaniadakis, G. Statistical mechanics in the context of special relativity. II. Phys. Rev. E 2005, 72, 036108. [Google Scholar] [CrossRef] [PubMed]
- Silva, R. The H-theorem in κ-statistics: Influence on the molecular chaos hypothesis. Phys. Lett. A 2006, 352, 17–20. [Google Scholar] [CrossRef]
- Kaniadakis, G. Towards a relativistic statistical theory. Physical A 2006, 365, 17–23. [Google Scholar] [CrossRef]
- Oikonomou, T.; Baris Bagci, G. A completeness criterion for Kaniadakis, Abe and two-parameter generalized statistical theories. Rep. Math. Phys. 2010, 66, 137–146. [Google Scholar] [CrossRef]
- Kaniadakis, G. Power-law tailed statistical distributions and Lorentz transformations. Phys. Lett. A 2011, 375, 356–359. [Google Scholar] [CrossRef]
- Guo, L. Physical meaning of the parameters in the two-parameter (κ,ζ) generalized statistics. Mod. Phys. Lett. B 2012, 26, 1250064. [Google Scholar] [CrossRef]
- Kaniadakis, G.; Scarfone, A.M.; Sparavigna, A.; Wada, T. Composition law of κ-entropy for statistically independent systems. Phys. Rev. E 2017, 95, 052112. [Google Scholar] [CrossRef]
- Scarfone, A.M. Boltzmann configurational entropy revisited in the framework of generalized statistical mechanics. Entropy 2022, 24, 140. [Google Scholar] [CrossRef]
- Alves, T.F.A.; Neto, J.F.D.S.; Lima, F.W.S.; Alves, G.A.; Carvalho, P.R.S. Is Kaniadakis κ-generalized statistical mechanics general? Phys. Lett. B 2023, 843, 138005. [Google Scholar] [CrossRef]
- Naudts, J. Deformed exponentials and logarithms in generalized thermostatistics. Physical A 2002, 316, 323–334. [Google Scholar] [CrossRef]
- Tempesta, P. Group entropies, correlation laws, and zeta functions. Phys. Rev. E 2011, 84, 021121. [Google Scholar] [CrossRef]
- Scarfone, A.M. Entropic forms and related algebras. Entropy 2013, 15, 624–649. [Google Scholar] [CrossRef]
- Souza, N.T.C.M.; Anselmo, D.H.A.L.; Silva, R.; Vasconcelos, M.S.; Mello, V.D. Analysis of fractal groups of the type d-(m,r)-Cantor within the framework of Kaniadakis statistics. Phys. Lett. A 2014, 378, 1691–1694. [Google Scholar] [CrossRef]
- Scarfone, A.M. On the κ-deformed cyclic functions and the generalized Fourier series in the framework of the κ-algebra. Entropy 2015, 17, 2812–2833. [Google Scholar] [CrossRef]
- Hirica, I.-E.; Pripoae, C.-L.; Pripoae, G.-T.; Preda, V. Lie Symmetries of the nonlinear Fokker-Planck equation based on weighted Kaniadakis entropy. Mathematics 2022, 10, 2776. [Google Scholar] [CrossRef]
- Aliano, A.; Kaniadakis, G.; Miraldi, E. Bose-Einstein condensation in the framework of κ-statistics. Physical A 2003, 325, 35–40. [Google Scholar] [CrossRef]
- Wada, T. Thermodynamic stabilities of the generalized Boltzmann entropies. Physical A 2004, 340, 126–130. [Google Scholar] [CrossRef]
- Lourek, I.; Tribeche, M. Thermodynamic properties of the blackbody radiation: A Kaniadakis approach. Phys. Lett. A 2017, 381, 452–456. [Google Scholar] [CrossRef]
- Raut, S.; Mondal, K.K.; Chatterjee, P.; Roy, S. Dust ion acoustic bi-soliton, soliton, and shock waves in unmagnetized plasma with Kaniadakis-distributed electrons in planar and nonplanar geometry. Eur. Phys. J. D 2023, 77, 100–115. [Google Scholar] [CrossRef]
- Dubinov, A.E. Gas-dynamic approach to the theory of non-linear ion-acoustic waves in plasma with Kaniadakis’ distributed species. Adv. Space Res. 2023, 71, 1108–1115. [Google Scholar] [CrossRef]
- Khalid, M.; Khan, M.; Muddusir; Ata-Ur-Rahman; Irshad, M. Periodic and localized structures in dusty plasma with Kaniadakis distribution. Z. Naturforsch. A 2021, 76, 891–897. [Google Scholar] [CrossRef]
- Curé, M.; Rial, D.F.; Christen, A.; Cassetti, J. A method to deconvolve stellar rotational velocities. Astron. Astrophys. 2014, 565, A85–A87. [Google Scholar] [CrossRef]
- Bento, E.P.; Silva, J.R.P.; Silva, R. Non-Gaussian statistics, Maxwellian derivation and stellar polytropes. Physical A 2013, 392, 666–672. [Google Scholar] [CrossRef]
- Carvalho, J.C.; Do Nascimento, J.D., Jr.; Silva, R.; De Medeiros, J.R. Non-gaussian statistics and stellar rotational velocities of main-sequence field stars. Astrophys. J. 2009, 696, L48–L51. [Google Scholar] [CrossRef]
- de Abreu, W.V.; Martinez, A.S.; do Carmo, E.D.; Gonçalves, A.C. A novel analytical solution of the deformed Doppler broadening function using the Kaniadakis distribution and the comparison of computational efficiencies with the numerical solution. Nucl. Eng. Technol. 2022, 54, 1471–1481. [Google Scholar] [CrossRef]
- Moradpour, H.; Javaherian, M.; Namvar, E.; Ziaie, A.H. Gamow temperature in Tsallis and Kaniadakis statistics. Entropy 2022, 24, 797. [Google Scholar] [CrossRef]
- Guedes, G.; Palma, D.A.P. Quasi-Maxwellian interference term functions. Ann. Nucl. Energy 2021, 151, 107914. [Google Scholar] [CrossRef]
- de Abreu, W.V.; Gonçalves, A.C.; Martinez, A.S. New analytical formulations for the Doppler broadening function and interference term based on Kaniadakis distributions. Ann. Nucl. Energy 2020, 135, 106960. [Google Scholar] [CrossRef]
- Luciano, G.G. Modified Friedmann equations from Kaniadakis entropy and cosmological implications on baryogenesis and 7Li-abundance. Eur. Phys. J. C 2022, 82, 314–318. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Paul, T. Modified cosmology from the thermodynamics of apparent horizon. Phys. Lett. B 2022, 835, 137553. [Google Scholar] [CrossRef]
- Luciano, G.G. Gravity and cosmology in Kaniadakis statistics: Current status and future challenges. Entropy 2022, 24, 1712–1717. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.S.; Pandey, B.D.; Pankaj; Sharma, U.K. Kaniadakis agegraphic dark energy. New Astron. 2024, 105, 102085. [Google Scholar] [CrossRef]
- Sania; Azhar, N.; Rani, S.; Jawad, A. Cosmic and thermodynamic consequences of Kaniadakis holographic dark energy in Brans–Dicke gravity. Entropy 2023, 25, 576. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.K.; Sharma, U.K.; Sharma, L.K.; Dubey, V.C. Statefinder hierarchy of Kaniadakis holographic dark energy with composite null diagnostic. Int. J. Geom. Methods Mod. Phys. 2023, 20, 2350074. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Paul, T. Early and late universe holographic cosmology from a new generalized entropy. Phys. Lett. B 2022, 831, 137189. [Google Scholar] [CrossRef]
- Ghaffari, S. Kaniadakis holographic dark energy in Brans-Dicke cosmology. Mod. Phys. Lett. A 2022, 37, 2250152. [Google Scholar] [CrossRef]
- Rani, S.; Jawad, A.; Sultan, A.M.; Shad, M. Cosmographic and thermodynamic analysis of Kaniadakis holographic dark energy. Int. J. Mod. Phys. D 2022, 31, 2250078. [Google Scholar] [CrossRef]
- Wada, T.; Matsuzoe, H.; Scarfone, A.M. Dualistic Hessian structures among the thermodynamic potentials in the κ-hermostatistics. Entropy 2015, 17, 7213–7229. [Google Scholar] [CrossRef]
- Mehri-Dehnavi, H.; Mohammadzadeh, H. Thermodynamic geometry of Kaniadakis statistics. J. Phys. A Math. Gen. 2020, 53, 375009. [Google Scholar] [CrossRef]
- Scarfone, A.M.; Matsuzoe, H.; Wada, T. Information geometry of κ-exponential families: Dually-flat, Hessian and Legendre structures. Entropy 2018, 20, 436. [Google Scholar] [CrossRef]
- Wada, T.; Scarfone, A.M. Information geometry on the κ-thermostatistics. Entropy 2015, 17, 1204–1217. [Google Scholar] [CrossRef]
- Quiceno Echavarría, H.R.; Arango Parra, J.C. A statistical manifold modeled on Orlicz spaces using Kaniadakis κ-exponential models. J. Math. Anal. 2015, 431, 1080–1098. [Google Scholar] [CrossRef]
- Scarfone, A.M.; Wada, T. Legendre structure of kappa-thermostatistics revisited in the framework of information geometry. J. Phys. A Math. Theor. 2014, 47, 275002. [Google Scholar] [CrossRef]
- Pistone, G. κ-Exponential models from the geometrical viewpoint. Eur. Phys. J. B 2009, 70, 29–37. [Google Scholar] [CrossRef]
- Costa, M.O.; Silva, R.; Anselmo, D.H.A.L.; Silva, J.R.P. Analysis of human DNA through power-law statistics. Phys. Rev. E 2019, 99, 022112. [Google Scholar] [CrossRef] [PubMed]
- Souza, N.T.C.M.; Anselmo, D.H.A.L.; Silva, R.; Vasconcelos, M.S.; Mello, V.D. A κ-statistical analysis of the Y-chromosome. EPL 2014, 108, 38004. [Google Scholar] [CrossRef]
- Macedo-Filho, A.; Moreira, D.A.; Silva, R.; da Silva, L.R. Maximum entropy principle for Kaniadakis statistics and networks. Phys. Lett. A 2013, 377, 842–846. [Google Scholar] [CrossRef]
- Stella, M.; Brede, M. A κ-deformed model of growing complex networks with fitness. Physical A 2014, 407, 360–368. [Google Scholar] [CrossRef]
- Clementi, F.; Gallegati, M.; Kaniadakis, G. A κ-generalized statistical mechanics approach to income analysis. J. Stat. Mech. 2009, P02037. [Google Scholar] [CrossRef]
- Bertotti, M.L.; Modenese, G. Exploiting the flexibility of a family of models for taxation and redistribution. Eur. Phys. J. B 2012, 85, 261–270. [Google Scholar] [CrossRef]
- Modanese, G. Common origin of power-law tails in income distributions and relativistic gases. Phys. Lett. A 2016, 380, 29–32. [Google Scholar] [CrossRef]
- Trivellato, B. The minimal κ-entropy martingale measure. Int. J. Theor. Appl. Financ. 2012, 15, 1250038. [Google Scholar] [CrossRef]
- Trivellato, B. Deformed exponentials and applications to finance. Entropy 2013, 15, 3471–3489. [Google Scholar] [CrossRef]
- Tapiero, O.J. A maximum (non-extensive) entropy approach to equity options bid-ask spread. Physical A 2013, 392, 3051–3060. [Google Scholar] [CrossRef]
- Scarfone, A.M.; Wada, T. Canonical partition function for anomalous systems described by the κ-entropy. Prog. Theor. Phys. Suppl. 2006, 162, 45–52. [Google Scholar] [CrossRef]
- Scarfone, A.M. Thermal and mechanical equilibrium among weakly interacting systems in generalized thermostatistics framework. Phys. Lett. A 2006, 355, 404–412. [Google Scholar] [CrossRef]
- Landsberge, P.T.; Vedral, V. Distributions and channel capacities in generalized statistical mechanics. Phys. Lett. A 1998, 247, 211–217. [Google Scholar] [CrossRef]
- Livadiotis, G.; McComas, D.J. Entropy defect: Algebra and thermodynamics. Europhys. Lett. 2023, 144, 21001. [Google Scholar] [CrossRef]
- Livadiotis, G.; McComas, D.J. Entropy defect in thermodynamics. Sci. Rep. 2023, 13, 9033. [Google Scholar] [CrossRef] [PubMed]
- Scarfone, A.M.; Wada, T. Thermodynamic equilibrium and its stability for microcanonical systems described by the Sharma-Taneja-Mittal entropy. Phys. Rev. E 2005, 72, 026123. [Google Scholar] [CrossRef] [PubMed]
ℵ | ||||||
0.5 | 36.8 | 41.3 | 5.85 | 8.06 | 1.34 | 3.57 |
1.0 | 224.0 | 246.0 | 20.59 | 26.70 | 4.36 | 8.87 |
1.5 | 787.0 | 863.0 | 48.53 | 61.90 | 8.78 | 16.09 |
2.0 | 2107.0 | 2306.0 | 94.40 | 119.90 | 14.81 | 26.36 |
2.5 | 4752.0 | 5193.0 | 163.10 | 206.10 | 22.64 | 39.63 |
ℵ | ||||||||||||
37 | 2.5761 | 0.03342 | 2.0607 | 6.0 | 0.8102 | 0.1980 | 0.5634 | 1.5 | 0.1690 | 0.8377 | 0.08488 | |
0.5 | 38 | −1.3791 | 0.01671 | −0.8298 | 6.5 | −1.7817 | 0.09376 | −0.9642 | 2.0 | −2.1727 | 0.3281 | −1.1016 |
39 | −3.6921 | 0.01204 | −1.5989 | 7.0 | −3.5685 | 0.06270 | 1.3475 | 2.5 | −3.9538 | 0.1719 | −1.2830 | |
40 | −6.7617 | 0.009670 | −1.9744 | 7.5 | −6.1733 | 0.04751 | −1.5050 | 3.0 | −6835 | 0.1113 | −1.2834 | |
225 | 1.2720 | 0.003917 | 0.8586 | 21.0 | 0.3309 | 0.04680 | 0.2129 | 5.0 | −1.4060 | 0.1438 | −0.6946 | |
1 | 230 | −1.8947 | 0.001918 | −0.8003 | 22.5 | −2.1989 | 0.01849 | −0.8219 | 6.0 | 0.0608 | −0.9088 | −0.9088 |
235 | −4.1393 | 0.001391 | −1.2201 | 24.0 | −4.1330 | 0.01231 | −1.0079 | 7.0 | −5.0451 | 0.03775 | −0.9106 | |
240 | −7.2656 | 0.001124 | −1.4248 | 25.5 | −7.3990 | 0.009404 | −1.0796 | 8.0 | −8.6768 | 0.02712 | −0.8879 | |
790 | 2.2376 | 0.001219 | 1.4587 | 50.0 | −0.5497 | 0.01190 | −0.2549 | 9.0 | 0.1923 | 0.1678 | 0.1149 | |
1.5 | 810 | −2.1479 | 0.0004171 | −0.6953 | 52.5 | −2.2195 | 0.006305 | −0.6605 | 11.0 | −2.7096 | 0.03009 | −0.7113 |
830 | −4.9360 | 0.0002896 | −1.0202 | 55.0 | −3.6418 | 0.004508 | −0.7731 | 13.0 | −4.6906 | 0.01655 | −0.7141 | |
850 | −10.1219 | 0.0002300 | −1.1654 | 57.5 | −5.4875 | 0.003571 | −0.8236 | 15.0 | −8.3442 | 0.01136 | −0.6919 | |
2150 | −1.3309 | 0.0001541 | −0.4175 | 95 | 1.1453 | 0.01147 | 0.6736 | 16.0 | −1.2338 | 0.03603 | −0.4690 | |
2 | 2200 | −3.9385 | 0.00009907 | −0.7820 | 100 | −1.7453 | 0.003185 | −0.4927 | 19.0 | −3.1742 | 0.01251 | −0.5956 |
2250 | −7.4910 | 0.00007668 | −0.9237 | 105 | −3.2500 | 0.002083 | −0.6232 | 22.0 | −5.1612 | 0.007630 | −0.5848 | |
2300 | −26.3122 | 0.00006387 | −1.0015 | 110 | −5.0400 | 0.001591 | −0.6727 | 25.0 | −9.1792 | 0.005478 | −0.5660 | |
4800 | 0.08936 | 0.00008495 | 0.03164 | 170 | −1.2742 | 0.001911 | −0.3547 | 23.0 | 0.1565 | 0.05803 | 0.08391 | |
2.5 | 4900 | −2.6290 | 0.00004530 | −0.5566 | 180 | −3.1060 | 0.001066 | −0.5263 | 28.0 | −2.9118 | 0.007853 | −0.508 |
5000 | −5.0810 | 0.00003349 | −0.7245 | 190 | −5.2257 | 0.0007732 | −0.5753 | 33.0 | −5.0884 | 0.004362 | −0.4981 | |
5100 | −9.2667 | 0.00002734 | −0.8089 | 200 | −9.9583 | 0.0006167 | −0.5964 | 38.0 | −9.8852 | 0.003019 | −0.4796 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scarfone, A.M.; Wada, T. Multi-Additivity in Kaniadakis Entropy. Entropy 2024, 26, 77. https://doi.org/10.3390/e26010077
Scarfone AM, Wada T. Multi-Additivity in Kaniadakis Entropy. Entropy. 2024; 26(1):77. https://doi.org/10.3390/e26010077
Chicago/Turabian StyleScarfone, Antonio M., and Tatsuaki Wada. 2024. "Multi-Additivity in Kaniadakis Entropy" Entropy 26, no. 1: 77. https://doi.org/10.3390/e26010077
APA StyleScarfone, A. M., & Wada, T. (2024). Multi-Additivity in Kaniadakis Entropy. Entropy, 26(1), 77. https://doi.org/10.3390/e26010077