Advances in Uncertain Information Fusion
1. Introduction
2. An Overview of Published Articles
3. Conclusions
Funding
Conflicts of Interest
References
- Canalle, G.K.; Salgado, A.C.; Loscio, B.F. A Survey on Data Fusion: What for? In What Form? What is Next? J. Intell. Inf. Syst. 2021, 57, 25–50. [Google Scholar] [CrossRef]
- Li, X.; Dunkin, F.; Dezert, J. Multi-Source Information Fusion: Progress and Future. Chin. J. Aeronaut. 2024, 37, 24–58. [Google Scholar] [CrossRef]
- Tang, Z.; Xu, T.; Li, H.; Wu, X.J.; Zhu, X.; Kittler, J. Exploring Fusion Strategies for Accurate RGBT Visual Object Tracking. Inf. Fusion 2023, 99, 101881. [Google Scholar] [CrossRef]
- Geng, X.; Liang, Y.; Jiao, L. Multi-Frame Decision Fusion Based on Evidential Association Rule Mining for Target Identification. Appl. Soft. Comput. 2020, 94, 106460. [Google Scholar] [CrossRef]
- Ji, T.; Sivakumar, A.N.; Chowdhary, G.; Driggs-Campbell, K. Proactive Anomaly Detection for Robot Navigation with Multi-Sensor Fusion. IEEE Robot. Autom. Lett. 2022, 7, 4975–4982. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, H.; Tian, X.; Jiang, J.; Ma, J. Image Fusion Meets Deep Learning: A Survey and Perspective. Inf. Fusion 2021, 76, 323–336. [Google Scholar] [CrossRef]
- Seiti, H.; Hafezalkotob, A.; Martínez, L. R-Sets, Comprehensive Fuzzy Sets Risk Modeling for Risk-Based Information Fusion and Decision-Making. IEEE Trans. Fuzzy Syst. 2019, 29, 385–399. [Google Scholar] [CrossRef]
- Foo, P.H.; Ng, G.W. High-Level Information Fusion: An Overview. J. Adv. Inf. Fusion 2013, 8, 33–72. [Google Scholar]
- Dubois, D.; Liu, W.; Ma, J.; Prade, H. The Basic Principles of Uncertain Information Fusion. An Organised Review of Merging Rules in Different Representation Frameworks. Inf. Fusion 2016, 32, 12–39. [Google Scholar] [CrossRef]
- Tang, Y.; Chen, Y.; Zhou, D. Measuring Uncertainty in the Negation Evidence for Multi-Source Information Fusion. Entropy 2022, 24, 1596. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, H.; Zhang, J.; Jiang, W. A New Correlation Measure for Belief Functions and Their Application in Data Fusion. Entropy 2023, 25, 925. [Google Scholar] [CrossRef] [PubMed]
- Nieto-Morote, A.; Ruz-Vila, F. On the Term Set’s Semantics for Pairwise Comparisons in Fuzzy Linguistic Preference Models. Entropy 2023, 25, 722. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Ristic, B.; Kim, D.Y. A Possibilistic Formulation of Autonomous Search for Targets. Entropy 2024, 26, 520. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Chen, J.; Li, K.; Tan, W.; Cai, C.; Ayub, M.S. A Parallel Multi-Modal Factorized Bilinear Pooling Fusion Method Based on the Semi-Tensor Product for Emotion Recognition. Entropy 2022, 24, 1836. [Google Scholar] [CrossRef] [PubMed]
- Nanni, L.; Fusaro, D.; Fantozzi, C.; Pretto, A. Improving Existing Segmentators Performance with Zero-Shot Segmentators. Entropy 2023, 25, 1502. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, L. Advances in Uncertain Information Fusion. Entropy 2024, 26, 945. https://doi.org/10.3390/e26110945
Jiao L. Advances in Uncertain Information Fusion. Entropy. 2024; 26(11):945. https://doi.org/10.3390/e26110945
Chicago/Turabian StyleJiao, Lianmeng. 2024. "Advances in Uncertain Information Fusion" Entropy 26, no. 11: 945. https://doi.org/10.3390/e26110945
APA StyleJiao, L. (2024). Advances in Uncertain Information Fusion. Entropy, 26(11), 945. https://doi.org/10.3390/e26110945