Non-Equilibrium Quantum Brain Dynamics: Water Coupled with Phonons and Photons
Abstract
:1. Introduction
2. Quantum Field Theory to Brain
3. Lagrangian Density and 2-Particle-Irreducible Effective Action
4. Acoustic Super-Radiance
5. Kinetic Entropy Current and the H-Theorem
6. Time-Evolution Equations in Spatially Homogeneous Systems
7. Discussion
8. Concluding Remarks and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Time-Evolution Equations
Appendix B. Derivation of a Solution of Acoustic Super-Radiance
Appendix C. Kadanoff–Baym Equations
Appendix D. Proof of the H-Theorem
Appendix E. Self-Energy in Kadanoff–Baym Equations
Appendix F. Derivation of Time-Evolution Equations for Coherent Fields
Appendix G. Conserved Energy Density
References
- Nicholls, J.G.; Martin, A.R.; Fuchs, P.A.; Brown, D.A.; Diamond, M.E.; Weisblat, D.A. From Neuron to Brain; Sinauer Associates: Sunderland, MA, USA, 2012. [Google Scholar]
- Craddock, T.J.A.; Tuszynski, J.A.; Hameroff, S. Cytoskeletal Signaling: Is Memory Encoded in Microtubule Lattices by CaMKII Phosphorylation? PLoS Comput. Biol. 2012, 8, e1002421. [Google Scholar] [CrossRef] [PubMed]
- Penrose, R. Shadows of the Mind; Oxford University Press: Oxford, UK, 1994. [Google Scholar]
- Chalmers, D.J. Toward a Theory of Consciousness; Indiana University: Bloomington, IN, USA, 1993. [Google Scholar]
- Chalmers, D. The hard problem of consciousness. In The Blackwell Companion to Consciousness; Wiley-Blackwell: Hoboken, NJ, USA, 2017; pp. 32–42. [Google Scholar]
- Cooke, S.F.; Bliss, T.V.P. Plasticity in the human central nervous system. Brain 2006, 129, 1659–1673. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Groth, R.D.; Cohen, S.M.; Emery, J.F.; Li, B.; Hoedt, E.; Zhang, G.; Neubert, T.A.; Tsien, R.W. γCaMKII shuttles Ca2+/CaM to the nucleus to trigger CREB phosphorylation and gene expression. Cell 2014, 159, 281–294. [Google Scholar] [CrossRef]
- Stuart, C.; Takahashi, Y.; Umezawa, H. Mixed-system brain dynamics: Neural memory as a macroscopic ordered state. Found. Phys. 1979, 9, 301–327. [Google Scholar] [CrossRef]
- Hameroff, S. Consciousness, free will and quantum brain biology–The ‘OrchOR’ theory. In Quantum Physics Meets the Philosophy of Mind: New Essays on the Mind-Body Relafion in Quantum-Theorefical Perspecfive; De Gruyter: Berlin, Germany, 2014; pp. 99–134. [Google Scholar]
- Hawkins, J.; Blakeslee, S. On Intelligence; Macmillan: New York, NY, USA, 2004. [Google Scholar]
- Lashley, K. The problem of cerebral organization in vision. In Visual Mechanisms; Klüver, H., Ed.; Jacques Cattell: Garrison, NY, USA, 1942; pp. 301–322. [Google Scholar]
- Lashley, K.S. Brain Mechanisms and Intelligence: A Quantitative Study of Injuries to the Brain; University of Chicago Press: Chicago, IL, USA, 1929. [Google Scholar]
- Pribram, K.H. Languages of the Brain: Experimental Paradoxes and Principles in Neuropsychology; Prentice-Hall: Hoboken, NJ, USA, 1971. [Google Scholar]
- Pribram, K.H.; Yasue, K.; Jibu, M. Brain and Perception: Holonomy and Structure in Figural Processing; Psychology Press: London, UK, 1991. [Google Scholar]
- Gabor, D. A new microscopic principle. Nature 1948, 161, 777–778. [Google Scholar] [CrossRef] [PubMed]
- Jibu, M.; Yasue, K. Quantum Brain Dynamics and Consciousness; John Benjamins: Amsterdam, The Netherlands, 1995. [Google Scholar]
- Penrose, R. The Emperor’s New Mind: Concerning Computers, Minds, and the Laws of Physics; Oxford University Press: Oxford, UK, 1989. [Google Scholar]
- Umezawa, H. Advanced Field Theory: Micro, Macro, and Thermal Physics; AIP: Melville, NY, USA, 1993. [Google Scholar]
- Ricciardi, L.M.; Umezawa, H. Brain and physics of many-body problems. Kybernetik 1967, 4, 44–48. [Google Scholar] [CrossRef]
- Stuart, C.; Takahashi, Y.; Umezawa, H. On the stability and non-local properties of memory. J. Theor. Biol. 1978, 71, 605–618. [Google Scholar] [CrossRef]
- Fröhlich, H. Bose condensation of strongly excited longitudinal electric modes. Phys. Lett. A 1968, 26, 402–403. [Google Scholar] [CrossRef]
- Fröhlich, H. Long-range coherence and energy storage in biological systems. Int. J. Quantum Chem. 1968, 2, 641–649. [Google Scholar] [CrossRef]
- Davydov, A.; Kislukha, N. Solitons in One-Dimensional Molecular Chains. Phys. Status Solidi (b) 1976, 75, 735–742. [Google Scholar] [CrossRef]
- Tuszyński, J.; Paul, R.; Chatterjee, R.; Sreenivasan, S. Relationship between Fröhlich and Davydov models of biological order. Phys. Rev. A 1984, 30, 2666. [Google Scholar] [CrossRef]
- Del Giudice, E.; Doglia, S.; Milani, M.; Vitiello, G. Spontaneous symmetry breakdown and boson condensation in biology. Phys. Lett. A 1983, 95, 508–510. [Google Scholar] [CrossRef]
- Del Giudice, E.; Doglia, S.; Milani, M.; Vitiello, G. A quantum field theoretical approach to the collective behaviour of biological systems. Nucl. Phys. B 1985, 251, 375–400. [Google Scholar] [CrossRef]
- Del Giudice, E.; Doglia, S.; Milani, M.; Vitiello, G. Electromagnetic field and spontaneous symmetry breaking in biological matter. Nucl. Phys. B 1986, 275, 185–199. [Google Scholar] [CrossRef]
- Del Giudice, E.; Preparata, G.; Vitiello, G. Water as a free electric dipole laser. Phys. Rev. Lett. 1988, 61, 1085. [Google Scholar] [CrossRef]
- Del Giudice, E.; Smith, C.; Vitiello, G. Magnetic Flux Quantization and Josephson Systems. Phys. Scr. 1989, 40, 786–791. [Google Scholar] [CrossRef]
- Jibu, M.; Yasue, K. A physical picture of Umezawa’s quantum brain dynamics. Cybern. Syst. Res. 1992, 92, 797–804. [Google Scholar]
- Jibu, M.; Yasue, K. Intracellular quantum signal transfer in Umezawa’s quantum brain dynamics. Cybern. Syst. 1993, 24, 1–7. [Google Scholar] [CrossRef]
- Jibu, M.; Yasue, K. The basic of quantum brain dynamics. In Rethinking Neural Networks: Quantum Fields and Biological Data; Psychology Press: London, UK, 1993; pp. 121–145. [Google Scholar]
- Jibu, M.; Hagan, S.; Hameroff, S.R.; Pribram, K.H.; Yasue, K. Quantum optical coherence in cytoskeletal microtubules: Implications for brain function. Biosystems 1994, 32, 195–209. [Google Scholar] [CrossRef]
- Jibu, M.; Pribram, K.H.; Yasue, K. From conscious experience to memory storage and retrieval: The role of quantum brain dynamics and boson condensation of evanescent photons. Int. J. Mod. Phys. B 1996, 10, 1735–1754. [Google Scholar] [CrossRef]
- Jibu, M.; Yasue, K. What is mind?- Quantum field theory of evanescent photons in brain as quantum theory of consciousness. Informatica 1997, 21, 471–490. [Google Scholar]
- Jibu, M.; Yasue, K. Magic without magic: Meaning of quantum brain dynamics. J. Mind Behav. 1997, 18, 205–227. [Google Scholar]
- Vitiello, G. Dissipation and memory capacity in the quantum brain model. Int. J. Mod. Phys. B 1995, 9, 973–989. [Google Scholar] [CrossRef]
- Vitiello, G. Fractals, coherent states and self-similarity induced noncommutative geometry. Phys. Lett. A 2012, 376, 2527–2532. [Google Scholar] [CrossRef]
- Vitiello, G. Fractals as macroscopic manifestation of squeezed coherent states and brain dynamics. J. Phys. Conf. Ser. 2012, 380, 012021. [Google Scholar] [CrossRef]
- Nishiyama, A.; Tanaka, S.; Tuszynski, J.A. Quantum Brain Dynamics and Holography. Dynamics 2022, 2, 187–218. [Google Scholar] [CrossRef]
- Beauchamp, M.S.; Oswalt, D.; Sun, P.; Foster, B.L.; Magnotti, J.F.; Niketeghad, S.; Pouratian, N.; Bosking, W.H.; Yoshor, D. Dynamic stimulation of visual cortex produces form vision in sighted and blind humans. Cell 2020, 181, 774–783. [Google Scholar] [CrossRef]
- Tyler, W.J.; Sanguinetti, J.L.; Fini, M.; Hool, N. Non-invasive neural stimulation. In Proceedings of the Micro-and Nanotechnology Sensors, Systems, and Applications IX, Anaheim, CA, USA, 9–13 April 2017; Volume 10194, pp. 280–290. [Google Scholar]
- Barker, A.T.; Jalinous, R.; Freeston, I.L. Non-invasive magnetic stimulation of human motor cortex. Lancet 1985, 325, 1106–1107. [Google Scholar] [CrossRef]
- Peterchev, A.V.; Wagner, T.A.; Miranda, P.C.; Nitsche, M.A.; Paulus, W.; Lisanby, S.H.; Pascual-Leone, A.; Bikson, M. Fundamentals of transcranial electric and magnetic stimulation dose: Definition, selection, and reporting practices. Brain Stimul. 2012, 5, 435–453. [Google Scholar] [CrossRef]
- Zaehle, T.; Rach, S.; Herrmann, C.S. Transcranial alternating current stimulation enhances individual alpha activity in human EEG. PLoS ONE 2010, 5, e13766. [Google Scholar] [CrossRef]
- Baxter, G.; Walsh, D.; Allen, J.; Lowe, A.; Bell, A. Effects of low intensity infrared laser irradiation upon conduction in the human median nerve in vivo. Exp. Physiol. Transl. Integr. 1994, 79, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Wells, J.; Kao, C.; Jansen, E.D.; Konrad, P.; Mahadevan-Jansen, A. Application of infrared light for in vivo neural stimulation. J. Biomed. Opt. 2005, 10, 064003. [Google Scholar] [CrossRef] [PubMed]
- Harvey, E.N. The effect of high frequency sound waves on heart muscle and other irritable tissues. Am. J. Physiol.-Leg. Content 1929, 91, 284–290. [Google Scholar] [CrossRef]
- Fry, F.; Ades, H.; Fry, W. Production of reversible changes in the central nervous system by ultrasound. Science 1958, 127, 83–84. [Google Scholar] [CrossRef] [PubMed]
- Tsui, P.H.; Wang, S.H.; Huang, C.C. In vitro effects of ultrasound with different energies on the conduction properties of neural tissue. Ultrasonics 2005, 43, 560–565. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly, M.A. Exploiting the mechanical effects of ultrasound for noninvasive therapy. Science 2024, 385, eadp7206. [Google Scholar] [CrossRef]
- Baym, G. Field-theoretic approach to the properties of the solid state. Ann. Phys. 1961, 14, 1–42. [Google Scholar] [CrossRef]
- Gartner, P.; Bányai, L.; Haug, H. Two-time electron-LO-phonon quantum kinetics and the generalized Kadanoff-Baym approximation. Phys. Rev. B 1999, 60, 14234. [Google Scholar] [CrossRef]
- Säkkinen, N.; Peng, Y.; Appel, H.; van Leeuwen, R. Many-body Green’s function theory for electron-phonon interactions: The Kadanoff-Baym approach to spectral properties of the Holstein dimer. J. Chem. Phys. 2015, 143, 234102. [Google Scholar] [CrossRef]
- de Melo, P.M.M.; Marini, A. Unified theory of quantized electrons, phonons, and photons out of equilibrium: A simplified ab initio approach based on the generalized Baym-Kadanoff ansatz. Phys. Rev. B 2016, 93, 155102. [Google Scholar] [CrossRef]
- Stefanucci, G.; van Leeuwen, R.; Perfetto, E. In-and out-of-equilibrium ab initio theory of electrons and phonons. arXiv 2023, arXiv:2303.02102. [Google Scholar] [CrossRef]
- Jaeger, H.; Haas, H. Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science 2004, 304, 78–80. [Google Scholar] [CrossRef] [PubMed]
- Lukosevicius, M.; Jaeger, H. Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 2009, 3, 127–149. [Google Scholar] [CrossRef]
- Komatsu, M.; Yaguchi, T.; Nakajima, K. Algebraic approach towards the exploitation of “softness”: The input–output equation for morphological computation. Int. J. Robot. Res. 2021, 40, 99–118. [Google Scholar] [CrossRef]
- Keppler, J. Scrutinizing the feasibility of macroscopic quantum coherence in the brain: A field-theoretical model of cortical dynamics. Front. Phys. 2023, 11, 1181416. [Google Scholar] [CrossRef]
- Van Nguyen, H.; Nguyen, B.H. Quantum field theory of interacting plasmon-photon-phonon system. Adv. Nat. Sci. Nanosci. Nanotechnol. 2015, 6, 035003. [Google Scholar] [CrossRef]
- Baym, G.; Kadanoff, L.P. Conservation laws and correlation functions. Phys. Rev. 1961, 124, 287. [Google Scholar] [CrossRef]
- Kadanoff, L.P.; Baym, G. Quantum Statistical Mechanics: Green’s Function Methods in Equilibrium Problems; WA Benjamin: Amsterdam, The Netherlands, 1962. [Google Scholar]
- Baym, G. Self-consistent approximations in many-body systems. Phys. Rev. 1962, 127, 1391. [Google Scholar] [CrossRef]
- O’Malley, A.; O’Connell, C.; Regan, C. Ultrastructural analysis reveals avoidance conditioning to induce a transient increase in hippocampal dentate spine density in the 6 hour post-training period of consolidation. Neuroscience 1998, 87, 607–613. [Google Scholar] [CrossRef]
- O’Malley, A.; O’Connell, C.; Murphy, K.; Regan, C. Transient spine density increases in the mid-molecular layer of hippocampal dentate gyrus accompany consolidation of a spatial learning task in the rodent. Neuroscience 2000, 99, 229–232. [Google Scholar] [CrossRef]
- Boisseau, R.P.; Vogel, D.; Dussutour, A. Habituation in non-neural organisms: Evidence from slime moulds. Proc. R. Soc. B Biol. Sci. 2016, 283, 20160446. [Google Scholar] [CrossRef] [PubMed]
- Babcock, N.; Montes-Cabrera, G.; Oberhofer, K.; Chergui, M.; Celardo, G.; Kurian, P. Ultraviolet superradiance from mega-networks of tryptophan in biological architectures. J. Phys. Chem. B 2024, 128, 4035–4046. [Google Scholar] [CrossRef]
- Zheng, J.m.; Pollack, G.H. Long-range forces extending from polymer-gel surfaces. Phys. Rev. E 2003, 68, 031408. [Google Scholar] [CrossRef] [PubMed]
- Pollack, G.H. The Fourth Phase of Water; Ebner and Sons Publishers: Seattle, WA, USA, 2013. [Google Scholar]
- Pollack, G.H. EZ Water and the Origin of Life. Annu. Res. Rev. Biol. 2022, 37, 18–28. [Google Scholar] [CrossRef]
- Del Giudice, E.; Voeikov, V.; Tedeschi, A.; Vitiello, G. The origin and the special role of coherent water in living systems. In Fields of the Cell; Research Signpost: Kerala, India, 2015; pp. 95–111. [Google Scholar]
- Brown, B.R.; Lohmann, A.W. Complex spatial filtering with binary masks. Appl. Opt. 1966, 5, 967–969. [Google Scholar] [CrossRef] [PubMed]
- Lohmann, A.W.; Paris, D. Binary Fraunhofer holograms, generated by computer. Appl. Opt. 1967, 6, 1739–1748. [Google Scholar] [CrossRef]
- Brown, B.; Lohmann, A. Computer-generated binary holograms. IBM J. Res. Dev. 1969, 13, 160–168. [Google Scholar] [CrossRef]
- Tegmark, M. Importance of quantum decoherence in brain processes. Phys. Rev. E 2000, 61, 4194. [Google Scholar] [CrossRef]
- Pokornỳ, J. Excitation of vibrations in microtubules in living cells. Bioelectrochemistry 2004, 63, 321–326. [Google Scholar] [CrossRef]
- Sahu, S.; Ghosh, S.; Fujita, D.; Bandyopadhyay, A. Live visualizations of single isolated tubulin protein self-assembly via tunneling current: Effect of electromagnetic pumping during spontaneous growth of microtubule. Sci. Rep. 2014, 4, 7303. [Google Scholar] [CrossRef]
- Hagan, S.; Hameroff, S.; Tuszynski, J.A. Quantum computation in brain microtubules: Decoherence and biological feasibility. Phys. Rev. E 2002, 65, 061901. [Google Scholar] [CrossRef] [PubMed]
- Kalra, A.P.; Benny, A.; Travis, S.M.; Zizzi, E.A.; Morales-Sanchez, A.; Oblinsky, D.G.; Craddock, T.J.A.; Hameroff, S.R.; MacIver, M.B.; Tuszynski, J.A.; et al. Electronic energy migration in microtubules. ACS Cent. Sci. 2023, 9, 352–361. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Agarwal, G.S.; Scully, M.O. Quantum fluctuations in the Fröhlich condensate of molecular vibrations driven far from equilibrium. Phys. Rev. Lett. 2019, 122, 158101. [Google Scholar] [CrossRef] [PubMed]
- Nardecchia, I.; Torres, J.; Lechelon, M.; Giliberti, V.; Ortolani, M.; Nouvel, P.; Gori, M.; Meriguet, Y.; Donato, I.; Preto, J.; et al. Out-of-equilibrium collective oscillation as phonon condensation in a model protein. Phys. Rev. X 2018, 8, 031061. [Google Scholar] [CrossRef]
- Kluberg-Stern, H.; Zuber, J. Renormalization of non-Abelian gauge theories in a background-field gauge. I. Green’s functions. Phys. Rev. D 1975, 12, 482. [Google Scholar] [CrossRef]
- Abbott, L.F. The background field method beyond one loop. Nucl. Phys. B 1981, 185, 189–203. [Google Scholar] [CrossRef]
- Abbott, L.F. Introduction to the background field method. Acta Phys. Pol. B 1981, 13, 33–50. [Google Scholar]
- Wang, Q.; Redlich, K.; Stöcker, H.; Greiner, W. From the Dyson–Schwinger to the transport equation in the background field gauge of QCD. Nucl. Phys. A 2003, 714, 293–334. [Google Scholar] [CrossRef]
- Stoilov, A.; Muncan, J.; Tsuchimoto, K.; Teruyaki, N.; Shigeoka, S.; Tsenkova, R. Pilot Aquaphotomic Study of the Effects of Audible Sound on Water Molecular Structure. Molecules 2022, 27, 6332. [Google Scholar] [CrossRef]
- Schwinger, J. Brownian motion of a quantum oscillator. J. Math. Phys. 1961, 2, 407–432. [Google Scholar] [CrossRef]
- Keldysh, L.V. Diagram technique for nonequilibrium processes. Sov. Phys. JETP 1965, 20, 1018–1026. [Google Scholar]
- Cornwall, J.M.; Jackiw, R.; Tomboulis, E. Effective action for composite operators. Phys. Rev. D 1974, 10, 2428. [Google Scholar] [CrossRef]
- Calzetta, E.; Hu, B.L. Nonequilibrium quantum fields: Closed-time-path effective action, Wigner function, and Boltzmann equation. Phys. Rev. D 1988, 37, 2878. [Google Scholar] [CrossRef] [PubMed]
- Berges, J. Introduction to nonequilibrium quantum field theory. AIP Conf. Proc. 2004, 739, 3–62. [Google Scholar]
- Cifra, M.; Pokornỳ, J.; Havelka, D.; Kučera, O. Electric field generated by axial longitudinal vibration modes of microtubule. BioSystems 2010, 100, 122–131. [Google Scholar] [CrossRef]
- Tsenkova, R. Aquaphotomics: Dynamic spectroscopy of aqueous and biological systems describes peculiarities of water. J. Infrared Spectrosc. 2009, 17, 303–313. [Google Scholar] [CrossRef]
- Ivanov, Y.B.; Knoll, J.; Voskresensky, D. Resonance transport and kinetic entropy. Nucl. Phys. A 2000, 672, 313–356. [Google Scholar] [CrossRef]
- Kita, T. Entropy in nonequilibrium statistical mechanics. J. Phys. Soc. Jpn. 2006, 75, 114005. [Google Scholar] [CrossRef]
- Nishiyama, A. Entropy production in 2D λϕ4 theory in the Kadanoff–Baym approach. Nucl. Phys. A 2010, 832, 289–313. [Google Scholar] [CrossRef]
- Nishiyama, A.; Tuszynski, J.A. Nonequilibrium quantum electrodynamics: Entropy production during equilibration. Int. J. Mod. Phys. B 2018, 32, 1850265. [Google Scholar] [CrossRef]
- Nishiyama, A.; Tuszynski, J.A. Non-equilibrium ϕ4 theory in open systems as a toy model of quantum field theory of the brain. Ann. Phys. 2018, 398, 214–237. [Google Scholar] [CrossRef]
- Nishiyama, A.; Tuszynski, J.A. Non-Equilibrium ϕ4 theory for networks: Towards memory formations with quantum brain dynamics. J. Phys. Commun. 2019, 3, 055020. [Google Scholar] [CrossRef]
- Nishiyama, A.; Tanaka, S.; Tuszynski, J.A. Non-Equilibrium Quantum Electrodynamics in Open Systems as a Realizable Representation of Quantum Field Theory of the Brain. Entropy 2020, 22, 43. [Google Scholar] [CrossRef] [PubMed]
- Dicke, R.H. Coherence in spontaneous radiation processes. Phys. Rev. 1954, 93, 99. [Google Scholar] [CrossRef]
- Gross, M.; Haroche, S. Superradiance: An essay on the theory of collective spontaneous emission. Phys. Rep. 1982, 93, 301–396. [Google Scholar] [CrossRef]
- Benedict, M.G. Super-Radiance: Multiatomic Coherent Emission; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Knoll, J.; Ivanov, Y.B.; Voskresensky, D.N. Exact conservation laws of the gradient expanded Kadanoff–Baym equations. Ann. Phys. 2001, 293, 126–146. [Google Scholar] [CrossRef]
- Ivanov, Y.B.; Knoll, J.; Voskresensky, D. Self-consistent approach to off-shell transport. Phys. At. Nucl. 2003, 66, 1902–1920. [Google Scholar] [CrossRef]
- Nishiyama, A.; Tanaka, S.; Tuszynski, J.A. Non-Equilibrium ϕ4 Theory in a Hierarchy: Towards Manipulating Holograms in Quantum Brain Dynamics. Dynamics 2023, 3, 1–17. [Google Scholar] [CrossRef]
- Groenewold, H.J. On the principles of elementary quantum mechanics. In On the Principles of Elementary Quantum Mechanics; Springer: Berlin/Heidelberg, Germany, 1946; pp. 1–56. [Google Scholar]
- Moyal, J.E. Quantum mechanics as a statistical theory. Proc. Camb. Philos. Soc. 1949, 45, 99–124. [Google Scholar] [CrossRef]
- Kita, T. Gauge invariance and Hall terms in the quasiclassical equations of superconductivity. Phys. Rev. B 2001, 64, 054503. [Google Scholar] [CrossRef]
- Levanda, M.; Fleurov, V. A Wigner quasi-distribution function for charged particles in classical electromagnetic fields. Ann. Phys. 2001, 292, 199–231. [Google Scholar] [CrossRef]
- Kita, T. Introduction to nonequilibrium statistical mechanics with quantum field theory. Prog. Theor. Phys. 2010, 123, 581–658. [Google Scholar] [CrossRef]
- Stratonovich, R.L. Gauge Invariant Generalization of Wigner Distribution. Dok. Akad. Nauk SSSR 1956, 1, 72–75. [Google Scholar]
- Fujita, S. Introduction to Non-Equilibrium Quantum Statistical Mechanics; Saunders: Philadelphia, PA, USA, 1966. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishiyama, A.; Tanaka, S.; Tuszynski, J.A. Non-Equilibrium Quantum Brain Dynamics: Water Coupled with Phonons and Photons. Entropy 2024, 26, 981. https://doi.org/10.3390/e26110981
Nishiyama A, Tanaka S, Tuszynski JA. Non-Equilibrium Quantum Brain Dynamics: Water Coupled with Phonons and Photons. Entropy. 2024; 26(11):981. https://doi.org/10.3390/e26110981
Chicago/Turabian StyleNishiyama, Akihiro, Shigenori Tanaka, and Jack Adam Tuszynski. 2024. "Non-Equilibrium Quantum Brain Dynamics: Water Coupled with Phonons and Photons" Entropy 26, no. 11: 981. https://doi.org/10.3390/e26110981
APA StyleNishiyama, A., Tanaka, S., & Tuszynski, J. A. (2024). Non-Equilibrium Quantum Brain Dynamics: Water Coupled with Phonons and Photons. Entropy, 26(11), 981. https://doi.org/10.3390/e26110981