Cascades Towards Noise-Induced Transitions on Networks Revealed Using Information Flows
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Information Flow Dynamics and the Domino Effect
3.2. Path Analysis and Tipping Point Trajectories
3.3. Network Structure and Node Roles in Metastable Transitions
3.4. Tipping Point Dynamics and Information Flow
3.5. Role Division and Interventions in Tipping Behavior
4. Discussion
5. Conclusions
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Background, Scope and Innovation
Appendix A.2. Methods and Definitions
Appendix A.2.1. Model
Appendix A.2.2. Kinetic Ising Model
Appendix A.3. Information Flow on Complex Networks
Appendix A.4. Noise Matching Procedure
Appendix A.5. Exact Information Flows I()
- Compute transition probabilities between states within the partition
- Renormalize probabilities to ensure conservation within the partition
- Evaluate for all possible node states in that partition
Extrapolation with Regressions
Appendix A.6. Noise Estimation Procedure
Appendix A.7. Switch Susceptibility as a Function of Degree
Appendix A.8. Additional Networks
Appendix A.9. Flip Probability per Degree
Appendix A.10. Synthetic Networks
Noise and Time Spent
Appendix A.11. Case Study of a Larger System
References
- Ladyman, J.; Lambert, J.; Wiesner, K. What Is a Complex System? Eur. J. Philos. Sci. 2013, 3, 33–67. [Google Scholar] [CrossRef]
- van Nes, E.H.; Arani, B.M.; Staal, A.; van der Bolt, B.; Flores, B.M.; Bathiany, S.; Scheffer, M. What Do You Mean, ‘Tipping Point’? Trends Ecol. Evol. 2016, 31, 902–904. [Google Scholar] [CrossRef] [PubMed]
- Kandel, E.R.; Schwartz, J.H.; Jessell, T.M. Principles of Neural Science, 4th ed.; McGraw-Hill Medical: New York, NY, USA, 2000. [Google Scholar]
- Fries, P. Rhythms for Cognition: Communication through Coherence. Neuron 2015, 88, 220–235. [Google Scholar] [CrossRef] [PubMed]
- Galam, S.; Cheon, T. Tipping Points in Opinion Dynamics: A Universal Formula in Five Dimensions. Front. Phys. 2020, 8, 566580. [Google Scholar] [CrossRef]
- Wunderling, N.; Donges, J.F.; Kurths, J.; Winkelmann, R. Interacting Tipping Elements Increase Risk of Climate Domino Effects under Global Warming. Earth Syst. Dyn. 2021, 12, 601–619. [Google Scholar] [CrossRef]
- Beggs, J.M.; Timme, N. Being Critical of Criticality in the Brain. Front. Physiol. 2012, 3. [Google Scholar] [CrossRef]
- Mitchell, M.; Hraber, P.; Crutchfield, J.P. Revisiting the Edge of Chaos: Evolving Cellular Automata to Perform Computations. arXiv 1993. [Google Scholar] [CrossRef]
- Forgoston, E.; Moore, R.O. A Primer on Noise-Induced Transitions in Applied Dynamical Systems. SIAM Rev. 2018, 60, 969–1009. [Google Scholar] [CrossRef]
- Czaplicka, A.; Holyst, J.A.; Sloot, P.M.A. Noise Enhances Information Transfer in Hierarchical Networks. Sci. Rep. 2013, 3, 1223. [Google Scholar] [CrossRef]
- Nicolis, G.; Nicolis, C. Stochastic Resonance, Self-Organization and Information Dynamics in Multistable Systems. Entropy 2016, 18, 172. [Google Scholar] [CrossRef]
- McNamara, B.; Wiesenfeld, K. Theory of Stochastic Resonance. Phys. Rev. A 1989, 39, 4854–4869. [Google Scholar] [CrossRef] [PubMed]
- Kramers, H.A. Brownian Motion in a Field of Force and the Diffusion Model of Chemical Reactions. Physica 1940, 7, 284–304. [Google Scholar] [CrossRef]
- Harush, U.; Barzel, B. Dynamic Patterns of Information Flow in Complex Networks. Nat. Commun. 2017, 8, 2181. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Barzel, B.; Barabási, A.L. Universal Resilience Patterns in Complex Networks. Nature 2016, 536, 238. [Google Scholar] [CrossRef]
- Dong, G.; Wang, F.; Shekhtman, L.M.; Danziger, M.M.; Fan, J.; Du, R.; Liu, J.; Tian, L.; Stanley, H.E.; Havlin, S. Optimal Resilience of Modular Interacting Networks. Proc. Natl. Acad. Sci. USA 2021, 118, e1922831118. [Google Scholar] [CrossRef]
- Liu, Y.; Sanhedrai, H.; Dong, G.; Shekhtman, L.M.; Wang, F.; Buldyrev, S.V.; Havlin, S. Efficient Network Immunization under Limited Knowledge. Natl. Sci. Rev. 2021, 8, nwaa229. [Google Scholar] [CrossRef]
- Zenil, H.; Kiani, N.A.; Marabita, F.; Deng, Y.; Elias, S.; Schmidt, A.; Ball, G.; Tegnér, J. An Algorithmic Information Calculus for Causal Discovery and Reprogramming Systems. iScience 2019, 19, 1160–1172. [Google Scholar] [CrossRef]
- Zenil, H.; Kiani, N.A.; Zea, A.A.; Tegnér, J. Causal Deconvolution by Algorithmic Generative Models. Nat. Mach. Intell. 2019, 1, 58–66. [Google Scholar] [CrossRef]
- Guo, C.; Yang, L.; Chen, X.; Chen, D.; Gao, H.; Ma, J. Influential Nodes Identification in Complex Networks via Information Entropy. Entropy 2020, 22, 242. [Google Scholar] [CrossRef]
- Hopfield, J.J. Neural Networks and Physical Systems with Emergent Collective Computational Abilities. Proc. Natl. Acad. Sci. USA 1982, 79, 2554–2558. [Google Scholar] [CrossRef]
- Glauber, R.J. Time-Dependent Statistics of the Ising Model. J. Math. Phys. 1963, 4, 294–307. [Google Scholar] [CrossRef]
- Lenton, T.M.; Abrams, J.F.; Bartsch, A.; Bathiany, S.; Boulton, C.A.; Buxton, J.E.; Conversi, A.; Cunliffe, A.M.; Hebden, S.; Lavergne, T.; et al. Remotely Sensing Potential Climate Change Tipping Points across Scales. Nat. Commun. 2024, 15, 343. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Small, M.; Zhao, Y.; Moore, J.M. Detecting and Predicting Tipping Points. Int. J. Bifurc. Chaos 2019, 29, 1930022. [Google Scholar] [CrossRef]
- Bury, T.M.; Sujith, R.I.; Pavithran, I.; Scheffer, M.; Lenton, T.M.; Anand, M.; Bauch, C.T. Deep Learning for Early Warning Signals of Tipping Points. Proc. Natl. Acad. Sci. USA 2021, 118, e2106140118. [Google Scholar] [CrossRef]
- D’Orsogna, M.R.; Perc, M. Statistical Physics of Crime: A Review. Phys. Life Rev. 2015, 12, 1–21. [Google Scholar] [CrossRef]
- Wunderling, N.; Stumpf, B.; Krönke, J.; Staal, A.; Tuinenburg, O.A.; Winkelmann, R.; Donges, J.F. How Motifs Condition Critical Thresholds for Tipping Cascades in Complex Networks: Linking Micro- to Macro-Scales. Chaos Interdiscip. J. Nonlinear Sci. 2020, 30, 043129. [Google Scholar] [CrossRef]
- Yang, Y.; Motter, A.E. Cascading Failures as Continuous Phase-Space Transitions. Phys. Rev. Lett. 2017, 119, 248302. [Google Scholar] [CrossRef]
- Yang, Y.; Nishikawa, T.; Motter, A.E. Small Vulnerable Sets Determine Large Network Cascades in Power Grids. Science 2017, 358, eaan3184. [Google Scholar] [CrossRef]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory; Wiley-Interscience: New York, NY, USA, 2005. [Google Scholar] [CrossRef]
- van Elteren, C.; Quax, R.; Sloot, P. Dynamic Importance of Network Nodes Is Poorly Predicted by Static Structural Features. Phys. A Stat. Mech. Its Appl. 2022, 593, 126889. [Google Scholar] [CrossRef]
- Quax, R.; Apolloni, A.; a Sloot, P.M. The Diminishing Role of Hubs in Dynamical Processes on Complex Networks. J. R. Soc. Interface R. Soc. 2013, 10Q, 20130568. [Google Scholar] [CrossRef]
- James, R.G.; Barnett, N.; Crutchfield, J.P. Information Flows? A Critique of Transfer Entropies. Phys. Rev. Lett. 2016, 116, 238701. [Google Scholar] [CrossRef] [PubMed]
- Beer, R.D.; Williams, P.L. Information Processing and Dynamics in Minimally Cognitive Agents. Cogn. Sci. 2015, 39, 1–38. [Google Scholar] [CrossRef] [PubMed]
- Kolchinsky, A. A Novel Approach to the Partial Information Decomposition. Entropy 2022, 24, 403. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.L.; Beer, R.D. Nonnegative Decomposition of Multivariate Information. arXiv 2010, arXiv:1004.2515. [Google Scholar]
- McDonnell, M.D.; Ward, L.M. The Benefits of Noise in Neural Systems: Bridging Theory and Experiment. Nat. Rev. Neurosci. 2011, 12, 415–425. [Google Scholar] [CrossRef]
- Vázquez-Rodríguez, B.; Avena-Koenigsberger, A.; Sporns, O.; Griffa, A.; Hagmann, P.; Larralde, H. Stochastic Resonance at Criticality in a Network Model of the Human Cortex. Sci. Rep. 2017, 7, 13020. [Google Scholar] [CrossRef]
- Roy, S.; Majumdar, S. The Role of Noise in Brain Function. In Noise and Randomness in Living System; Roy, S., Majumdar, S., Eds.; Springer: Singapore, 2022; pp. 99–110. [Google Scholar] [CrossRef]
- Faisal, A.A.; Selen, L.P.J.; Wolpert, D.M. Noise in the Nervous System. Nat. Rev. Neurosci. 2008, 9, 292–303. [Google Scholar] [CrossRef]
- Calim, A.; Palabas, T.; Uzuntarla, M. Stochastic and Vibrational Resonance in Complex Networks of Neurons. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2021, 379, rsta.2020.0236. [Google Scholar] [CrossRef]
- Lizier, J.T.; Prokopenko, M.; Zomaya, A.Y. The Information Dynamics of Phase Transitions in Random Boolean Networks. In Proceedings of the Eleventh International Conference on the Simulation and Synthesis of Living Systems (ALife XI), Winchester, UK, 5–8 August 2008; pp. 374–381. [Google Scholar]
- Lizier, J.T.; Flecker, B.; Williams, P.L. Towards a Synergy-Based Approach to Measuring Information Modification. In Proceedings of the IEEE Symposium on Artificial Life (ALIFE), Singapore, 16–19 April 2013; pp. 43–51. [Google Scholar] [CrossRef]
- Lizier, J.T.; Bertschinger, N.; Jost, J.; Wibral, M. Information Decomposition of Target Effects from Multi-Source Interactions: Perspectives on Previous, Current and Future Work. Entropy 2018, 20, 307. [Google Scholar] [CrossRef]
- Quax, R.; Har-Shemesh, O.; Sloot, P.M. Quantifying Synergistic Information Using Intermediate Stochastic Variables. Entropy 2017, 19, 85. [Google Scholar] [CrossRef]
- Lizier, J.T.; Prokopenko, M.; Zomaya, A.Y. Information Modification and Particle Collisions in Distributed Computation. Chaos Interdiscip. J. Nonlinear Sci. 2010, 20, 037109. [Google Scholar] [CrossRef] [PubMed]
- Scheffer, M.; Bascompte, J.; Brock, W.A.; Brovkin, V.; Carpenter, S.R.; Dakos, V.; Held, H.; van Nes, E.H.; Rietkerk, M.; Sugihara, G. Early-Warning Signals for Critical Transitions. Nature 2009, 461, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Prokopenko, M.; Lizier, J.T.; Obst, O.; Wang, X.R. Relating Fisher Information to Order Parameters. Phys. Rev. E 2011, 84, 041116. [Google Scholar] [CrossRef] [PubMed]
- Scheffer, M.; Carpenter, S.; Foley, J.A.; Folke, C.; Walker, B. Catastrophic Shifts in Ecosystems. Nature 2001, 413, 591–596. [Google Scholar] [CrossRef]
- Eason, T.; Garmestani, A.S.; Cabezas, H. Managing for Resilience: Early Detection of Regime Shifts in Complex Systems. Clean Technol. Environ. Policy 2014, 16, 773–783. [Google Scholar] [CrossRef]
- Schreiber, T. Measuring Information Transfer. Phys. Rev. Lett. 2000, 85, 461–464. [Google Scholar] [CrossRef]
- Ay, N.; Polani, D. Information Flows in Causal Networks. Adv. Complex Syst. 2008, 11, 17–41. [Google Scholar] [CrossRef]
- Runge, J.; Bathiany, S.; Bollt, E.; Camps-Valls, G.; Coumou, D.; Deyle, E.; Glymour, C.; Kretschmer, M.; Mahecha, M.D.; Muñoz-Marí, J.; et al. Inferring Causation from Time Series in Earth System Sciences. Nat. Commun. 2019, 10, 1–13. [Google Scholar] [CrossRef]
- Li, C. Functions of Neuronal Network Motifs. Phys. Rev. E 2008, 78, 037101. [Google Scholar] [CrossRef]
- Bialek, W.; Tishby, N. Predictive Information. arXiv 1999. [Google Scholar] [CrossRef]
- López-Ruiz, R.; Mancini, H.L.; Calbet, X. A Statistical Measure of Complexity. Phys. Lett. A 1995, 209, 321–326. [Google Scholar] [CrossRef]
- Virtanen, P. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 15. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Elteren, C.; Quax, R.; Sloot, P.M.A. Cascades Towards Noise-Induced Transitions on Networks Revealed Using Information Flows. Entropy 2024, 26, 1050. https://doi.org/10.3390/e26121050
van Elteren C, Quax R, Sloot PMA. Cascades Towards Noise-Induced Transitions on Networks Revealed Using Information Flows. Entropy. 2024; 26(12):1050. https://doi.org/10.3390/e26121050
Chicago/Turabian Stylevan Elteren, Casper, Rick Quax, and Peter M. A. Sloot. 2024. "Cascades Towards Noise-Induced Transitions on Networks Revealed Using Information Flows" Entropy 26, no. 12: 1050. https://doi.org/10.3390/e26121050
APA Stylevan Elteren, C., Quax, R., & Sloot, P. M. A. (2024). Cascades Towards Noise-Induced Transitions on Networks Revealed Using Information Flows. Entropy, 26(12), 1050. https://doi.org/10.3390/e26121050