Kinetic Theory of Self-Propelled Particles with Nematic Alignment
Abstract
:1. Introduction
2. Model
3. Landau Kinetic Theory
3.1. Mode Equations
3.1.1. The Mean-Field Collision Integral
3.1.2. The Landau Collision Integral
4. Comparison with Agent-Based Simulation
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Evaluation of Collision Integrals
Appendix B. Self-Diffusion by Means of a Random Telegraph Model
References
- Vicsek, T.; Czirók, A.; Ben-Jacob, E.; Cohen, I.; Shochet, O. Novel Type of Phase Transition in a System of Self-Driven Particles. Phys. Rev. Lett. 1995, 75, 1226. [Google Scholar] [CrossRef] [PubMed]
- Ginelli, F. The Physics of the Vicsek Model. Eur. Phys. J. Spec. Top. 2016, 225, 2099–2117. [Google Scholar] [CrossRef]
- Chaikin, P.M.; Lubensky, T.C. Principles of Condensed Matter Physics; Cambridge University Press: Cambridge, UK, 1995; Volume 10. [Google Scholar]
- Ramaswamy, S. The Mechanics and Statistics of Active Matter. Annu. Rev. Condens. Matter Phys. 2010, 1, 323–345. [Google Scholar] [CrossRef]
- Marchetti, M.; Joanny, J.; Ramaswamy, S.; Liverpool, T.; Prost, J.; Rao, M.; Simha, R. Hydrodynamics of Soft Active Matter. Rev. Mod. Phys. 2013, 85, 1143–1189. [Google Scholar] [CrossRef]
- Menzel, A.M. Tuned, Driven, and Active Soft Matter. Phys. Rep. 2015, 554, 1–45. [Google Scholar] [CrossRef]
- Shaebani, M.R.; Wysocki, A.; Winkler, R.G.; Gompper, G.; Rieger, H. Computational Models for Active Matter. Nat. Rev. Phys. 2020, 2, 181–199. [Google Scholar] [CrossRef]
- Chaté, H. Dry Aligning Dilute Active Matter. Annu. Rev. Condens. Matter Phys. 2020, 11, 189–212. [Google Scholar] [CrossRef]
- Bechinger, C.; Leonardo, R.D.; Löwen, H.; Reichhardt, C.; Volpe, G.; Volpe, G. Active Particles in Complex and Crowded Environments. Rev. Mod. Phys. 2016, 88, 045006. [Google Scholar] [CrossRef]
- Essafri, I.; Ghosh, B.; Desgranges, C.; Delhommelle, J. Designing, Synthesizing and Modeling Active Fluids. Phys. Fluids 2022, 34, 071301. [Google Scholar] [CrossRef]
- te Vrugt, M.; Wittkowski, R. A review of active matter reviews. arXiv 2024, arXiv:2405.15751. [Google Scholar] [CrossRef]
- Toner, J. The Physics of Flocking; Cambridge University Press: Cambridge, UK, 2024. [Google Scholar]
- Menzel, A.M. Collective Motion of Binary Self-propelled Particle Mixtures. Phys. Rev. E 2012, 85, 021912. [Google Scholar] [CrossRef] [PubMed]
- Nourhani, A.; Saintillan, D. Spontaneous Directional Flow of Active Magnetic Particles. Phys. Rev. E 2021, 103, L040601. [Google Scholar] [CrossRef] [PubMed]
- Ihle, T.; Kursten, R.; Lindner, B. Asymptotically Exact Scattering Theory of Active Particles with Anti-Alignment Interactions. arXiv 2023, arXiv:2303.03357. [Google Scholar] [CrossRef]
- Kürsten, R.; Mihatsch, J.; Ihle, T. Flocking in Binary Mixtures of Anti-aligning Self-propelled Particles. arXiv 2023, arXiv:2304.05476. [Google Scholar] [CrossRef]
- Das, S.; Ciarchi, M.; Zhou, Z.; Yan, J.; Zhang, J.; Alert, R. Flocking by Turning Away. Phys. Rev. X 2024, 14, 031008. [Google Scholar] [CrossRef]
- Escaff, D. Anti-aligning Interaction Between Active Particles Induces a Finite Wavelength Instability: The Dancing Hexagons. Phys. Rev. E 2024, 109, 024602. [Google Scholar] [CrossRef]
- Boltz, H.; Ihle, T. Reduced density fluctuations via anti-aligning in active matter. 2024; submitted for publication. [Google Scholar]
- Chaté, H.; Ginelli, F.; Montagne, R. Simple Model for Active Nematics: Quasi-Long-Range Order and Giant Fluctuations. Phys. Rev. Lett. 2006, 96, 180602. [Google Scholar] [CrossRef]
- Peruani, F.; Deutsch, A.; Bär, M. Nonequilibrium Clustering of Self-Propelled Rods. Phys. Rev. E 2006, 74, 030904. [Google Scholar] [CrossRef]
- Baskaran, A.; Marchetti, M.C. Hydrodynamics of Self-Propelled Hard Rods. Phys. Rev. E 2008, 77, 011920. [Google Scholar] [CrossRef]
- Baskaran, A.; Marchetti, M.C. Enhanced Diffusion and Ordering of Self-Propelled Rods. Phys. Rev. Lett. 2008, 101, 268101. [Google Scholar] [CrossRef]
- Ginelli, F.; Peruani, F.; Bär, M.; Chaté, H. Large-Scale Collective Properties of Self-Propelled Rods. Phys. Rev. Lett. 2010, 104, 184502. [Google Scholar] [CrossRef] [PubMed]
- Schaller, V.; Weber, C.; Semmrich, C.; Frey, E.; Bausch, A.R. Polar Patterns of Driven Filaments. Nature 2010, 467, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Giomi, L.; Bowick, M.; Mishra, P.; Sknepnek, R.; Marchetti, M.C. Defect Dynamics in Active Nematics. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2014, 372, 20130365. [Google Scholar] [CrossRef] [PubMed]
- Doostmohammadi, A.; Ignés-Mullol, J.; Yeomans, J.M.; Sagués, F. Active Nematics. Nat. Commun. 2018, 9, 3246. [Google Scholar] [CrossRef]
- Winkler, R.; Gompper, G. The Physics of Active Polymers and Filaments. J. Chem. Phys. 2020, 153, 040901. [Google Scholar] [CrossRef]
- Salbreux, G.; Jülicher, F.; Prost, J.; Callan-Jones, A. Theory of nematic and polar active fluid surfaces. Phys. Rev. Res. 2022, 4, 033158. [Google Scholar] [CrossRef]
- Grossman, D.; Aranson, I.; Jacob, E.B. Emergence of agent swarm migration and vortex formation through inelastic collisions. New J. Phys. 2008, 10, 023036. [Google Scholar] [CrossRef]
- Großmann, R.; Aranson, I.S.; Peruani, F. A particle-field approach bridges phase separation and collective motion in active matter. Nat. Commun. 2020, 11, 5365. [Google Scholar] [CrossRef]
- Elgeti, J.; Winkler, R.G.; Gompper, G. Physics of microswimmers—Single particle motion and collective behavior: A review. Rep. Prog. Phys. 2015, 78, 056601. [Google Scholar] [CrossRef]
- Bertin, E.; Droz, M.; Grégoire, G. Boltzmann and hydrodynamic description for self-propelled particles. Phys. Rev. E 2006, 74, 022101. [Google Scholar] [CrossRef]
- Peruani, F.; Deutsch, A.; Bär, M. A mean-field theory for self-propelled particles interacting by velocity alignment mechanisms. Eur. Phys. J. Spec. Top. 2008, 157, 111–122. [Google Scholar] [CrossRef]
- Degond, P.; Motsch, S. Continuum limit of self-driven particles with orientation interaction. Math. Model. Methods Appl. Sci. 2008, 18, 1193–1215. [Google Scholar] [CrossRef]
- Bertin, E.; Droz, M.; Grégoire, G. Hydrodynamic Equations for Self-Propelled Particles: Microscopic Derivation and Stability Analysis. J. Phys. A 2009, 42, 445001. [Google Scholar] [CrossRef]
- Baskaran, A.; Marchetti, M.C. Nonequilibrium statistical mechanics of self-propelled hard rods. J. Stat. Mech. Theory Exp. 2010, 2010, P04019. [Google Scholar] [CrossRef]
- Ihle, T. Kinetic theory of flocking: Derivation of hydrodynamic equations. Phys. Rev. E 2011, 83, 030901. [Google Scholar] [CrossRef]
- Chou, Y.L.; Wolfe, R.; Ihle, T. Kinetic Theory for Systems of Self-Propelled Particles with Metric-Free Interactions. Phys. Rev. E 2012, 86, 021120. [Google Scholar] [CrossRef]
- Thüroff, F.; Weber, C.A.; Frey, E. Critical Assessment of the Boltzmann Approach to Active Systems. Phys. Rev. Lett. 2013, 111, 190601. [Google Scholar] [CrossRef]
- Peshkov, A.; Bertin, E.; Ginelli, F.; Chaté, H. Boltzmann-Ginzburg-Landau approach for continuous descriptions of generic Vicsek-like models. Eur. Phys. J. Spec. Top. 2014, 223, 1315–1344. [Google Scholar] [CrossRef]
- Chou, Y.L.; Ihle, T. Active Matter Beyond Mean-Field: Ring-Kinetic Theory for Self-Propelled Particles. Phys. Rev. Stat. Nonlinear Soft Matter Phys. 2015, 91, 022103. [Google Scholar] [CrossRef]
- Carlen, E.; Carvalho, M.C.; Degond, P.; Wennberg, B. A Boltzmann model for rod alignment and schooling fish. Nonlinearity 2015, 28, 1783. [Google Scholar] [CrossRef]
- Gerasimenko, V. Kinetic Equations of Active Soft Matter. In Kinetic Theory; Kyzas, G.Z., Mitropoulos, A.C., Eds.; IntechOpen: Rijeka, Croatia, 2018; Chapter 5. [Google Scholar] [CrossRef]
- Kürsten, R.; Ihle, T. Quantitative Kinetic Theory of Flocking with Three-Particle Closure. Phys. Rev. E 2021, 104, 034604. [Google Scholar] [CrossRef] [PubMed]
- Patelli, A. Landau Kinetic Equation for Dry Aligning Active Models. J. Stat. Mech. Theory Exp. 2021, 2021, 033210. [Google Scholar] [CrossRef]
- Feliachi, O.; Besse, M.; Nardini, C.; Barré, J. Fluctuating kinetic theory and fluctuating hydrodynamics of aligning active particles: The dilute limit. J. Stat. Mech. Theory Exp. 2022, 2022, 113207. [Google Scholar] [CrossRef]
- Ihle, T.; Kursten, R.; Lindner, B. Scattering Theory of Non-Brownian Active Particles with Social Distancing. arXiv 2023, arXiv:2303.03354. [Google Scholar] [CrossRef]
- Soto, R.; Pinto, M.; Brito, R. Kinetic Theory of Motility Induced Phase Separation for Active Brownian Particles. Phys. Rev. Lett. 2024, 132, 208301. [Google Scholar] [CrossRef]
- Murphy, P.; Perepelitsa, M.; Timofeyev, I.; Lieber-Kotz, M.; Islas, B.; Igoshin, O.A. Breakdown of Boltzmann-type models for the alignment of self-propelled rods. Math. Biosci. 2024, 376, 109266. [Google Scholar] [CrossRef]
- Dougherty, J.P. Foundations of non-equilibrium statistical mechanics. Philos. Trans. R. Soc. Lond. Ser. A Phys. Eng. Sci. 1994, 346, 259–305. [Google Scholar]
- McKean, H.P., Jr. An exponential formula for solving Boltzmann’s equation for a Maxwellian gas. J. Comb. Theory 1967, 2, 358–382. [Google Scholar] [CrossRef]
- Bolley, F.; Cañizo, J.A.; Carrillo, J.A. Mean-field limit for the stochastic Vicsek model. Appl. Math. Lett. 2012, 25, 339–343. [Google Scholar] [CrossRef]
- Frouvelle, A.; Liu, J.G. Dynamics in a Kinetic Model of Oriented Particles with Phase Transition. SIAM J. Math. Anal. 2012, 44, 791–826. [Google Scholar] [CrossRef]
- Carlen, E.; Degond, P.; Wennberg, B. Kinetic limits for pair-interaction driven master equations and biological swarm models. Math. Model. Methods Appl. Sci. 2013, 23, 1339–1376. [Google Scholar] [CrossRef]
- Degond, P.; Frouvelle, A.; Liu, J.G. Macroscopic limits and phase transition in a system of self-propelled particles. J. Nonlinear Sci. 2013, 23, 427–456. [Google Scholar] [CrossRef]
- Vlasov, A.A. O vibracionnyx svojstvax èlektronnogo gaz (On the vibrational properties of the electron gas). Zh. Eksp. Teor. Fiz. 1938, 8, 291. (In Russian). For English translation, see Vlasov, A.A. The vibrational properties of an electron gas. Soviet Physics Uspekhi 1968, 10, 721 [Google Scholar]
- Jabin, P.E. A review of the mean field limits for Vlasov equations. Kinet. Relat. Model. 2014, 7, 661–711. [Google Scholar] [CrossRef]
- Jeans, J.H. On the theory of star-streaming and the structure of the universe. Mon. Not. R. Astron. Soc. 1915, 76, 70–84. [Google Scholar] [CrossRef]
- Hénon, M. Vlasov equation. Astron. Astrophys. 1982, 114, 211. [Google Scholar]
- Kac, M. Foundations of kinetic theory. In Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Volume III; University of California Press: Oakland, CA, USA, 1956; pp. 171–197. [Google Scholar]
- Sznitman, A.S. Topics in propagation of chaos. In Ecole d’Eté de Probabilités de Saint-Flour XIX—1989; Springer: Berlin/Heidelberg, Germany, 1991; Volume 1464, pp. 165–251. [Google Scholar]
- Degond, P.; Pareschi, L.; Russo, G. Modeling and Computational Methods for Kinetic Equations; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Chaintron, L.P.; Diez, A. Propagation of chaos: A review of models, methods and applications. I. Models and methods. Kinet. Relat. Model. 2022, 15, 895–1015. [Google Scholar] [CrossRef]
- Lanford, O.E. Time evolution of large classical systems. In Dynamical Systems, Theory and Applications: Battelle Seattle 1974 Rencontres; Moser, J., Ed.; Springer: Berlin/Heidelberg, Germany, 1975; pp. 1–111. [Google Scholar] [CrossRef]
- Landau, L.D. Die kinetische Gleichung für den Fall Coulombscher Wechselwirkung (The Kinetic Equation in the Case of Coulomb Interactions). Phys. Z. Sowjetunion 1936, 10, 163. (In German). For English translation, see ter Haar, D. (Ed.) Collected Papers of L. D. Landau; Gordon and Breech, Science Publishers: New York, NY, USA, 1965 [Google Scholar]
- Bogoliubov, N.N. Problemy Dinamicheskoi Teorii v Statisticheskoi Fiziki (Problems of a Dynamical Theory in Statistical Physics); Federal Publishing House for Technical-Theoretical Literature; 1946. (In Russian). For English translation, see de Boer, J. Uhlenbeck, G.E., Ed.; Studies in Statistical Physics; North Holland: Amsterdam, The Netherlands, 1962; Volume 1. [Google Scholar]
- Balescu, R. Statistical Mechanics of Charged Particles; Interscience Publishers: New York, NY, USA, 1963. [Google Scholar]
- Balescu, R. Statistical Dynamics: Matter out of Equilibrium; World Scientific Publishing: Hackensack, NJ, USA, 1997. [Google Scholar]
- Mihatsch, J.; Ihle, T. Untitled article. 2024; in preparation. [Google Scholar]
- Arsen’ev, A.A.; Buryak, O.E. On the connection between the solutions of the Boltzman and the Landau–Fokker–Planck equations. Math. USSR-Sb. 1991, 69, 465. [Google Scholar] [CrossRef]
- Velázquez, J.J.; Winter, R. From a non-Markovian system to the Landau equation. Commun. Math. Phys. 2018, 361, 239–287. [Google Scholar] [CrossRef]
- Toner, J.; Tu, Y. Flocks, Herds, and Schools: A Quantitative Theory of Flocking. Phys. Rev. E 1998, 58, 4828. [Google Scholar] [CrossRef]
- Bertin, E.; Chaté, H.; Ginelli, F.; Mishra, S.; Peshkov, A.; Ramaswamy, S. Mesoscopic Theory for Fluctuating Active Nematics. New J. Phys. 2013, 15, 085032. [Google Scholar] [CrossRef]
- Yang, X.; Li, J.; Forest, M.G.; Wang, Q. Hydrodynamic theories for flows of active liquid crystals and the generalized Onsager principle. Entropy 2016, 18, 202. [Google Scholar] [CrossRef]
- ten Hagen, B.; van Teeffelen, S.; Löwen, H. Brownian motion of a self-propelled particle. J. Phys. Condens. Matter 2011, 23, 194119. [Google Scholar] [CrossRef] [PubMed]
- Ballerini, M.; Cabibbo, N.; Candelier, R.; Cavagna, A.; Cisbani, E.; Giardina, I.; Lecomte, V.; Orlandi, A.; Parisi, G.; Procaccini, A.; et al. Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. Proc. Natl. Acad. Sci. USA 2008, 105, 1232–1237. [Google Scholar] [CrossRef]
- Ginelli, F.; Chaté, H. Relevance of metric-free interactions in flocking phenomena. Phys. Rev. Lett. 2010, 105, 168103. [Google Scholar] [CrossRef]
- Degond, P.; Pulvirenti, M. Propagation of chaos for topological interactions. Ann. Appl. Probab. 2019, 29, 2594–2612. [Google Scholar] [CrossRef]
- Mietke, A.; Dunkel, J. Anyonic Defect Braiding and Spontaneous Chiral Symmetry Breaking in Dihedral Liquid Crystals. Phys. Rev. X 2022, 12, 011027. [Google Scholar] [CrossRef]
- Halperin, B.; Nelson, D.R. Theory of two-dimensional melting. Phys. Rev. Lett. 1978, 41, 121. [Google Scholar] [CrossRef]
- Gardiner, C. Stochastic Methods; Springer: Berlin/Heidelberg, Germany, 2009; Volume 4. [Google Scholar]
- Risken, H. The Fokker-Planck Equation; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- Kreuzer, H.J. Non Equilibrium Thermodynamics and Its Statistical Foundations; Claredon: Oxford, UK, 1981. [Google Scholar]
- Cercignani, C.; Illner, R.; Pulvirenti, M. The Mathematical Theory of Dilute Gases; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1993. [Google Scholar]
- Villani, C. A review of mathematical topics in collisional kinetic theory. Handb. Math. Fluid Dyn. 2002, 1, 3–8. [Google Scholar]
- Cercignani, C.; Gerasimenko, U.; Petrina, D.Y. Many-Particle Dynamics and Kinetic Equations; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 420. [Google Scholar]
- Dorfman, J.R.; van Beijeren, H.; Kirkpatrick, T.R. Contemporary Kinetic Theory of Matter; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Yvon, J. La théorie statistique des fluides et l’équation d’état (The statistical theory of fluids and the equation of state). In Actualités Scientifiques et Industrielles, 203, Théories Mécaniques; Rocard, Y., Ed.; Hermann & Cie: Paris, France, 1935. (In French) [Google Scholar]
- Born, M.; Green, H.S. A general kinetic theory of liquids I. The molecular distribution functions. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1946, 188, 10–18. [Google Scholar]
- Kirkwood, J.G. The statistical mechanical theory of transport processes I. General theory. J. Chem. Phys. 1946, 14, 180–201. [Google Scholar] [CrossRef]
- Ursell, H.D. The evaluation of Gibbs’ phase-integral for imperfect gases. Math. Proc. Camb. Philos. Soc. 1927, 23, 685–697. [Google Scholar] [CrossRef]
- Mayer, J.E.; Goeppert Mayer, M. Statistical Mechanics; John Wiley & Sons: Hoboken, NJ, USA, 1940. [Google Scholar]
- Mischler, S.; Mouhot, C. Kac’s program in kinetic theory. Invent. Math. 2013, 193, 1–147. [Google Scholar] [CrossRef]
- Kürsten, R. Universal Scaling of Clustering Instability for Interacting Active Brownian Particles. arXiv 2024, arXiv:2402.18711. [Google Scholar] [CrossRef]
- Press, W.H. Numerical Recipes 3rd Edition: The Art of Scientific Computing; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Volpe, G.; Gigan, S.; Volpe, G. Simulation of the active Brownian motion of a microswimmer. Am. J. Phys. 2014, 82, 659–664. [Google Scholar] [CrossRef]
- Kürsten, R. Aligning active particles py package. Comput. Phys. Commun. 2023, 290, 108774. [Google Scholar] [CrossRef]
- Denk, J.; Frey, E. Pattern-induced local symmetry breaking in active-matter systems. Proc. Natl. Acad. Sci. USA 2020, 117, 31623–31630. [Google Scholar] [CrossRef]
- Kürsten, R.; Ihle, T. Dry Active Matter Exhibits a Self-Organized Cross Sea Phase. Phys. Rev. Lett. 2020, 125, 188003. [Google Scholar] [CrossRef]
- Alder, B.; Wainwright, T. Velocity autocorrelations for hard spheres. Phys. Rev. Lett. 1967, 18, 988. [Google Scholar] [CrossRef]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boltz, H.-H.; Kohler, B.; Ihle, T. Kinetic Theory of Self-Propelled Particles with Nematic Alignment. Entropy 2024, 26, 1054. https://doi.org/10.3390/e26121054
Boltz H-H, Kohler B, Ihle T. Kinetic Theory of Self-Propelled Particles with Nematic Alignment. Entropy. 2024; 26(12):1054. https://doi.org/10.3390/e26121054
Chicago/Turabian StyleBoltz, Horst-Holger, Benjamin Kohler, and Thomas Ihle. 2024. "Kinetic Theory of Self-Propelled Particles with Nematic Alignment" Entropy 26, no. 12: 1054. https://doi.org/10.3390/e26121054
APA StyleBoltz, H.-H., Kohler, B., & Ihle, T. (2024). Kinetic Theory of Self-Propelled Particles with Nematic Alignment. Entropy, 26(12), 1054. https://doi.org/10.3390/e26121054