Fried-Yennie Gauge in Pseudo-QED
Abstract
:1. Introduction
2. The Fried-Yennie Gauge in D-Dimensions
2.1. Setting the Stage
2.2. Identifying The Dressing Functions
2.3. Scrutinizing : Convergence and Gauge Fixing
3. The Fried-Yennie Gauge in PQED
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. About the 4-Momentum Integrals
Appendix B. On the β Integral
Appendix C. More about C(p)
Appendix D. C(p) Integrals
References
- Hoffmann, R.; Kabanov, A.; Artyom, A.; Golov, A.; Andrey, A.; Proserpio, D.M. Homo Citans and Carbon Allotropes: For an Ethics of Citation. Angew. Chem. Int. Ed. 2016, 55, 10962–10976. [Google Scholar] [CrossRef] [PubMed]
- Mounet, N.; Gibertini, M.; Schwaller, P.; Campi, D.; Merkys, A.; Marrazzo, A.; Sohier, T.; Castelli, I.E.; Cepellotti, A.; Pizzi, G.; et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 2018, 13, 246–252. [Google Scholar] [CrossRef]
- Volovik, G.E. The Universe in a Helium Droplet; OUP Oxford: Oxford, UK, 2009. [Google Scholar]
- Lado, J.L.; Sigrist, M. Two-Dimensional Topological Superconductivity with Antiferromagnetic Insulators. Phys. Rev. Lett. 2018, 121, 037002. [Google Scholar] [CrossRef] [PubMed]
- Dorey, N.; Mavromatos, N.E. QED3 and two-dimensional superconductivity without parity violation. Nucl. Phys. B 1992, 386, 614. [Google Scholar] [CrossRef]
- Farakos, K.; Mavromatos, N.E. Dynamical gauge symmetry breaking and superconductivity in three-dimensional systems. Mod. Phys. Lett. A 1998, 13, 1019–1033. [Google Scholar] [CrossRef]
- Franz, M.; Tesanovic, Z. Algebraic Fermi Liquid from Phase Fluctuations: “Topological” Fermions, Vortex “Berryons”, and QED3 Theory of Cuprate Superconductors. Phys. Rev. Lett. 2001, 87, 257003. [Google Scholar] [CrossRef]
- Herbut, I.F. QED3 theory of underdoped high-temperature superconductors. Phys. Rev. B 2002, 66, 094504. [Google Scholar] [CrossRef]
- Franz, M.; Tesanovic, Z.; Vafek, O. QED3 theory of pairing pseudogap in cuprates: From d-wave superconductor to antiferromagnet via an algebraic Fermi liquid. Phys. Rev. B 2002, 66, 054535. [Google Scholar] [CrossRef]
- von Klitzing, K.; Chakraborty, T.; Kim, P.; Madhavan, V.; Dai, X.; McIver, J.; Tokura, Y.; Savary, L.; Smirnova, D.; Rey, A.M.; et al. 40 years of the quantum Hall effect. Nat. Rev. Phys. 2020, 2, 397–401. [Google Scholar] [CrossRef]
- Prange, R.E.; Girvin, S.M. (Eds.) “The Quantum Hall Effect” Graduate Texts in Contemporary Physics; Springer: New York, NY, USA, 1989; ISBN 978-0-387-97177-3. [Google Scholar]
- Ezawa, Z.F. Quantum Hall Effects: Recent Theoretical and Experimental Developments, 3rd ed.; World Scientific Publishing Company: Singapore, 2013; ISBN 13-978-9813203662. [Google Scholar]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tan, Y.-W.; Horst, L.S.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005, 438, 201. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; Dubonos, S.V.; Firsov, A.A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Geim, A.; Novoselov, K. The rise of graphene. Nat. Mater. 2007, 6, 183. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.Z.; Kane, C.L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045. [Google Scholar] [CrossRef]
- Qi, X.-L.; Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 2011, 83, 1057. [Google Scholar] [CrossRef]
- Shankar, R. Topological Insulators—A review. arXiv 2018, arXiv:1804.06471. [Google Scholar]
- Marino, E. Quantum electrodynamics of particles on a plane and the Chern-Simons theory. Nucl. Phys. B 1993, 408, 551–564. [Google Scholar] [CrossRef]
- Marino, E.C.; Nascimento, L.O.; Alves, V.; Smith, C.M. Unitarity of theories containing fractional powers of the d’Alembertian operator. Phys. Rev. D 2014, 90, 105003. [Google Scholar] [CrossRef]
- Amaral, R.L.P.G.d.; Marino, E.C. Canonical quantization of theories containing fractional powers of the d’Alembertian operator. J. Phys. A 1992, 25, 5183–5200. [Google Scholar] [CrossRef]
- Rubakov, V.A. Large and infinite extra dimensions: An Introduction. Phys. Usp. 2001, 44, 871–893. [Google Scholar] [CrossRef]
- Gorbar, E.V.; Gusynin, V.P.; Miransky, V.A. Dynamical chiral symmetry breaking on a brane in reduced QED. Phys. Rev. D 2001, 64, 105028. [Google Scholar] [CrossRef]
- Olivares, J.A.C.; Mizher, A.J.; Raya, A. Non-perturbative field theoretical aspects of graphene and related systems. Rev. Mex. Fis. 2022, 68, 040101. [Google Scholar]
- Báez-Cuevas, J.; Raya, A.; Rojas, J.C. Chiral symmetry restoration in reduced QED at finite temperature in the supercritical coupling regime. Phys. Rev. D 2020, 102, 056020. [Google Scholar] [CrossRef]
- Kotikov, A.; Teber, S. Critical behaviour of reduced QED4,3 and dynamical fermion gap generation in graphene. Phys. Rev. D 2016, 94, 114010. [Google Scholar] [CrossRef]
- Nascimento, L.O.; Alves, V.; Peña, F.P.; Smith, C.M.; Marino, E. Chiral-symmetry breaking in pseudoquantum electrodynamics at finite temperature. Phys. Rev. D 2015, 92, 025018. [Google Scholar] [CrossRef]
- Alves, V.; Elias, W.S.; Nascimento, L.O.; Jurićixcx, V.; Peña, F. Chiral symmetry breaking in the pseudo-quantum electrodynamics. Phys. Rev. D 2013, 87, 125002. [Google Scholar] [CrossRef]
- Albino, L.; Bashir, A.; Mizher, A.J.; Raya, A. Electron-photon vertex and dynamical chiral symmetry breaking in reduced QED: An advanced study of gauge invariance. Phys. Rev. D 2022, 106, 096007. [Google Scholar] [CrossRef]
- Teber, S. Electromagnetic current correlations in reduced quantum electrodynamics. Phys. Rev. D 2012, 86, 025005. [Google Scholar] [CrossRef]
- Kotikov, A.V.; Teber, S. Two-loop fermion self-energy in reduced quantum electrodynamics and application to the ultrarelativistic limit of graphene. Phys. Rev. D 2014, 89, 065038. [Google Scholar] [CrossRef]
- Teber, S. Two-loop fermion self-energy and propagator in reduced QED3,2. Phys. Rev. D 2014, 89, 067702. [Google Scholar] [CrossRef]
- Teber, S.; Kotikov, A. Field theoretic renormalization study of reduced quantum electrodynamics and applications to the ultrarelativistic limit of Dirac liquids. Phys. Rev. D 2018, 97, 074004. [Google Scholar] [CrossRef]
- Dudal, D.; Mizher, A.J.; Pais, P. Exact quantum scale invariance of three-dimensional reduced QED theories. Phys. Rev. D 2019, 99, 045017. [Google Scholar] [CrossRef]
- Fernández, L.; Alves, V.; Nascimento, L.O.; Peña, F.; Gomes, M.; Marino, E.C. Renormalization of the band gap in 2D materials through the competition between electromagnetic and four-fermion interactions in large N expansion. Phys. Rev. D 2020, 102, 016020. [Google Scholar] [CrossRef]
- Carrington, M.E. Effect of a Chern-Simons term on dynamical gap generation in graphene. Phys. Rev. B 2019, 99, 115432. [Google Scholar] [CrossRef]
- Olivares, J.A.C.; Albino, L.; Mizher, A.J.; Raya, A. Influence of a Chern-Simons term in the dynamical fermion masses in reduced or pseudo QED. Phys. Rev. D 2020, 102, 096023. [Google Scholar] [CrossRef]
- Magalhães, G.C.; Alves, V.; Marino, E.C.; Nascimento, L.O. Pseudo Quantum Electrodynamics and Chern-Simons theory Coupled to Two-dimensional Electrons. Phys. Rev. D 2020, 101, 116005. [Google Scholar] [CrossRef]
- Dudal, D.; Mizher, A.J.; Pais, P. Remarks on the Chern-Simons photon term in the QED description of graphene. Phys. Rev. D 2018, 98, 065008. [Google Scholar] [CrossRef]
- Carrington, M.E.; Frey, A.R.; Meggison, B.A. Effect of anisotropy on phase transitions in graphene. Phys. Rev. B 2020, 102, 125427. [Google Scholar] [CrossRef]
- Caneda, P.I.C.; Menezes, G. Reduced quantum electrodynamics in curved space. Phys. Rev. D 2021, 103, 065010. [Google Scholar] [CrossRef]
- Alves, V.; Gomes, M.; Petrov, A.Y.; da Silva, A.J. On the supersymmetric pseudo-QED. Phys. Lett. B 2023, 840, 137856. [Google Scholar] [CrossRef]
- Dudal, D.; Matusalem, F.; Mizher, A.J.; Rocha, A.R.; Villavicencio, C. Half-integer anomalous currents in 2D materials from a QFT viewpoint. Sci. Rep. 2022, 12, 5439. [Google Scholar] [CrossRef] [PubMed]
- Fried, H.M.; Yennie, D.R. New Techniques in the Lamb Shift Calculation. Phys. Rev. 1958, 112, 1391–1404. [Google Scholar] [CrossRef]
- Boos, E.E.; Davydychev, A.I. Infrared problems of describing the glueball and an estimation of its mass. Preprint INP MSU 88-21/42, Moscow, 1988.
- Adkins, G.S. Fried-Yennie gauge in dimensionally regularized QED. Phys. Rev. D 1993, 47, 3647–3650. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mizher, A.; Raya, A.; Raya, K. Fried-Yennie Gauge in Pseudo-QED. Entropy 2024, 26, 157. https://doi.org/10.3390/e26020157
Mizher A, Raya A, Raya K. Fried-Yennie Gauge in Pseudo-QED. Entropy. 2024; 26(2):157. https://doi.org/10.3390/e26020157
Chicago/Turabian StyleMizher, Ana, Alfredo Raya, and Khépani Raya. 2024. "Fried-Yennie Gauge in Pseudo-QED" Entropy 26, no. 2: 157. https://doi.org/10.3390/e26020157
APA StyleMizher, A., Raya, A., & Raya, K. (2024). Fried-Yennie Gauge in Pseudo-QED. Entropy, 26(2), 157. https://doi.org/10.3390/e26020157