Effect of Al Content on Microstructure and Properties of AlxCr0.2NbTiV Refractory High-Entropy Alloys
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Effect of Al Content on Phase Structure and Microstructure of High-Entropy Alloys
3.2. Effect of Al Content on Properties of High-Entropy Alloys
4. Conclusions
- AlxCr0.2NbTiV alloys (x = 0.2, 0.5, or 0.8) all exhibit a BCC single-phase structure with a dendritic microstructure. With increasing Al content, there is a reduction in Nb segregation, coarsening of grains, reduction in lattice parameters, intensification of lattice distortions, and an increase in the intensity of the (110) crystal plane diffraction peaks.
- Adding aluminum enhances the effect of solution strengthening; however, due to grain coarsening, the microhardness and room temperature compressive strength of the alloy are only slightly improved. Additionally, because the effect of solution strengthening is diminished at high temperatures, the compressive strength of the alloy at 1000 °C is significantly reduced.
- The creep resistance of the alloys increases with increasing Al content. Under loading rates less than 2.5 mN/s, the creep stress exponent n is greater than three, indicating that the coarse-grained RHEAs with a BCC single-phase structure primarily deform through dislocation creep mechanisms at low stress and slow loading rates.
- Increasing Al content reduces the sensitivity of the alloys to loading rates during creep. Particularly in the Al0.8Cr0.2NbTiV alloy, as the loading rate increases, the creep strain rate sensitivity m decreases, reaching 0.0758 at a loading rate of 2.5 mN/s.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Zhou, Y.J.; Lin, J.P.; Chen, G.L.; Liaw, P.K. Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 2008, 10, 534–538. [Google Scholar] [CrossRef]
- Sathiyamoorthi, P.; Kim, H.S. High-entropy alloys with heterogeneous microstructure: Processing and mechanical properties. Prog. Mater. Sci. 2022, 123, 100709. [Google Scholar] [CrossRef]
- Wang, X.; Zhai, W.; Wang, J.Y.; Wei, B. Strength and ductility enhancement of high-entropy FeCoNi2Al0.9 alloy by ultrasonically refining eutectic structures. Scr. Mater. 2023, 225, 115154. [Google Scholar] [CrossRef]
- Marzbali, M.H.; Jafarian, H.R.; Bokaei, S.; Park, N.; Momeni, A.; Eivani, A.R. On the microstructure and mechanical properties of FeCoCrCuNi high entropy alloy during hot compression. J. Mater. Res. Technol. JmrT 2022, 16, 1747–1760. [Google Scholar] [CrossRef]
- Yurchenko, N.; Panina, E.; Belyakov, A.; Salishchev, G.; Zherebtsov, S.; Stepanov, N. On the yield stress anomaly in a B2-ordered refractory AlNbTiVZr0.25 high-entropy alloy. Mater. Lett. 2022, 311, 131584. [Google Scholar] [CrossRef]
- Senkov, O.N.; Wilks, G.B.; Scott, J.M.; Miracle, D.B. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 2011, 19, 698–706. [Google Scholar] [CrossRef]
- Yurchenko, N.Y.; Stepanov, N.D.; Shaysultanov, D.G.; Tikhonovsky, M.A.; Salishchev, G.A. Effect of Al content on structure and mechanical properties of the AlxCrNbTiVZr (x = 0; 0.25; 0.5; 1) high-entropy alloys. Mater. Charact. 2016, 121, 125–134. [Google Scholar] [CrossRef]
- Li, R.B.; Liu, W.Y.; Zhang, Z.X.; Zhang, R.L.; Zhang, M.L. Research on Microstructure and Mechanical Properties of Multicomponent AlxFeCrVTi0.25 High-entropy Alloys. Hot Work. Process 2021, 50, 27–30. [Google Scholar] [CrossRef]
- Ma, Y.; Feng, Y.H.; Debela, T.T.; Peng, G.J.; Zhang, T.H. Nanoindentation study on the creep characteristics of high-entropy alloy films: Fcc versus bcc structures. Int. J. Refract. Met. Hard Mater. 2016, 54, 395–400. [Google Scholar] [CrossRef]
- Deng, C.; Li, R.D.; Yuan, T.C.; Niu, P.D. Influence of Al content on microstructure and nanoindentation of selective laser melting AlxCoCrFeNi(x = 0.3, 0.5, 0.7, 1.0). J. Mater. Eng. 2022, 50, 27–35. [Google Scholar] [CrossRef]
- Stepanov, N.D.; Shaysultanov, D.G.; Salishchev, G.A.; Tikhonovsky, M.A. Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy. Mater. Lett. 2015, 142, 153–155. [Google Scholar] [CrossRef]
- Li, R.X.; Liaw, P.K.; Zhang, Y. Synthesis of AlxCoCrFeNi high-entropy alloys by high-gravity combustion from oxides. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2017, 707, 668–673. [Google Scholar] [CrossRef]
- Sun, Y.N.; Chen, P.; Liu, L.H.; Yan, M.; Wu, X.Y.; Yu, C.Y.; Liu, Z.Y. Local mechanical properties of AlxCoCrCuFeNi high entropy alloy characterized using nanoindentation. Intermetallics 2018, 93, 85–88. [Google Scholar] [CrossRef]
- Chen, S.Y.; Yang, X.; Dahmen, K.A.; Liaw, P.K.; Zhang, Y. Microstructures and Crackling Noise of AlxNbTiMoV High Entropy Alloys. Entropy 2014, 16, 870–884. [Google Scholar] [CrossRef]
- Guo, S.; Ng, C.; Lu, J.; Liu, C.T. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 2011, 109, 103505. [Google Scholar] [CrossRef]
- Liu, K.; Li, X.; Wang, J.Y.; Zhang, Y.; Guo, X.; Wu, S.J.; Yu, H.C. Investigation of mechanical and corrosion properties of light and high hardness cast AlTiVCrCu0.4 high entropy alloy. Mater. Charact. 2023, 200, 112878. [Google Scholar] [CrossRef]
- Stepanov, N.D.; Yurchenko, N.Y.; Skibin, D.V.; Tikhonovsky, M.A.; Salishchev, G.A. Structure and mechanical properties of the AlCrxNbTiV (x = 0, 0.5, 1, 1.5) high entropy alloys. J. Alloys Compd. 2015, 652, 266–280. [Google Scholar] [CrossRef]
- Whitfield, T.E.; Pickering, E.J.; Owen, L.R.; Senkov, O.N.; Miracle, D.B.; Stone, H.J.; Jones, N.G. An assessment of the thermal stability of refractory high entropy superalloys. J. Alloys Compd. 2021, 857, 157583. [Google Scholar] [CrossRef]
- Li, D.; Dong, Y.G.; Zhang, Z.Q.; Zhang, Q.H.; Chen, S.; Jia, N.N.; Wang, H.R.; Wang, B.P.; Jin, K.; Xue, Y.F.; et al. An as-cast Ti-V-Cr-Al light-weight medium entropy alloy with outstanding tensile properties. J. Alloys Compd. 2021, 877, 160199. [Google Scholar] [CrossRef]
- Lv, J.W.; Fang, W.; Bai, X.; Yu, H.Y.; Xue, C.C.; Zhang, X.; Liu, B.X.; Feng, J.H.; Yin, F.X. Effect of Mo and V additions on the coarsening kinetics and high-temperature strength in γ′ precipitation-strengthened high-entropy alloys. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2023, 876, 145145. [Google Scholar] [CrossRef]
- Li, R.B.; Zou, C.L.; Zhang, Z.X.; Zhang, R.L.; Peng, W.J. Effect of Boron addition on microstructure and properties of as-cast Al0.3CoCrFeNi high entropy alloy. Rare Met. Mater. Eng. 2023, 52, 667–674. [Google Scholar] [CrossRef]
- Toda-Caraballo, I.; Rivera-Díaz-del-Castillo, P.E.J. Modelling solid solution hardening in high entropy alloys. Acta Mater. 2015, 85, 14–23. [Google Scholar] [CrossRef]
- Yurchenko, N.Y.; Stepanov, N.D.; Zherebtsov, S.V.; Tikhonovsky, M.A.; Salishchev, G.A. Structure and mechanical properties of B2 ordered refractory AlNbTiVZrx (x = 0–1.5) high-entropy alloys. Mater. Sci. Eng. A 2017, 704, 82–90. [Google Scholar] [CrossRef]
- Sahu, B.P.; Dutta, A.; Mitra, R. Influence of Composition on Nanoindentation Response of Ni-Zr Alloy Thin Films. Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 2019, 50, 5656–5669. [Google Scholar] [CrossRef]
- Liu, H.P.; Xu, C.; Liu, C.M.; He, G.C.; Yu, T.; Li, Y. Probing the indentation induced nanoscale damage of rhenium. Mater. Des. 2020, 186, 108362. [Google Scholar] [CrossRef]
- Zhou, J.; He, Y.; Shen, J.; Essa, F.A.; Yu, J. Ni/Ni3Al interface-dominated nanoindentation deformation and pop-in events. Nanotechnology 2021, 33, 105703. [Google Scholar] [CrossRef]
- Zhang, L.J.; Yu, P.F.; Cheng, H.; Zhang, H.; Diao, H.Y.; Shi, Y.Z.; Chen, B.L.; Chen, P.Y.; Feng, R.; Bai, J.; et al. Nanoindentation Creep Behavior of an Al0.3CoCrFeNi High-Entropy Alloy. Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 2016, 47A, 5871–5875. [Google Scholar] [CrossRef]
- Pi, J.H.; Wang, Z.Z.; He, X.C.; Bai, Y.Q. Hardness and Modulus of Cu-based Bulk Metallic Glasses via Nanoindentation. Rare Met. Mater. Eng. 2018, 47, 479–484. [Google Scholar] [CrossRef]
- Sahu, B.P.; Dutta, A.; Mitra, R. Mechanism of negative strain rate sensitivity in metallic glass film. J. Alloys Compd. 2019, 784, 488–499. [Google Scholar] [CrossRef]
- Varillas, J.; Ocenásek, J.; Torner, J.; Alcalá, J. Understanding imprint formation, plastic instabilities and hardness evolutions in FCC, BCC and HCP metal surfaces. Acta Mater. 2021, 217, 117122. [Google Scholar] [CrossRef]
- Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Castellero, A.; Moser, B.; Uhlenhaut, D.I.; Torre, F.H.D.; Löffler, J.F. Room-temperature creep and structural relaxation of Mg–Cu–Y metallic glasses. Acta Mater. 2008, 56, 3777–3785. [Google Scholar] [CrossRef]
- Fei, W.; Kewei, X. An investigation of nanoindentation creep in polycrystalline Cu thin film. Mater. Lett. 2004, 58, 2345–2349. [Google Scholar] [CrossRef]
- Ganji, R.S.; Karthik, P.S.; Rao, K.B.S.; Rajulapati, K.V. Strengthening mechanisms in equiatomic ultrafine grained AlCoCrCuFeNi high-entropy alloy studied by micro- and nanoindentation methods. Acta Mater. 2017, 125, 58–68. [Google Scholar] [CrossRef]
- Wang, J.; Li, R.; Hua, N.; Huang, L.; Zhang, T. Ternary Fe–P–C bulk metallic glass with good soft-magnetic and mechanical properties. Scr. Mater. 2011, 65, 536–539. [Google Scholar] [CrossRef]
- Lee, D.H.; Seok, M.Y.; Zhao, Y.; Choi, I.C.; He, J.; Lu, Z.P.; Suh, J.Y.; Ramamurty, U.; Kawasaki, M.; Langdon, T.G.; et al. Spherical nanoindentation creep behavior of nanocrystalline and coarse-grained CoCrFeMnNi high-entropy alloys. Acta Mater. 2016, 109, 314–322. [Google Scholar] [CrossRef]
- Yavari, P.; Langdon, T.G. An examination of the breakdown in creep by viscous glide in solid solution alloys at high stress levels. Acta Metall. 1982, 30, 2181–2196. [Google Scholar] [CrossRef]
- Ma, Y.; Peng, G.J.; Wen, D.H.; Zhang, T.H. Nanoindentation creep behavior in a CoCrFeCuNi high-entropy alloy film with two different structure states. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2015, 621, 111–117. [Google Scholar] [CrossRef]
- Wang, S.P.; Xu, J. Incipient plasticity and activation volume of dislocation nucleation for TiZrNbTaMo high-entropy alloys characterized by nanoindentation. J. Mater. Sci. Technol. 2019, 35, 812–816. [Google Scholar] [CrossRef]
Alloys | ΔHmix/kJ·mol−1 | ΔSmix/J·K−1·mol−1 | δ/% | VEC |
---|---|---|---|---|
x = 0.2 | −5.96 | 11.75 | 5.4 | 4.674 |
x = 0.5 | −10.82 | 12.38 | 5.2 | 4.513 |
x = 0.8 | −14.21 | 12.57 | 5.0 | 4.400 |
Alloys | Regions | Al | Cr | Nb | Ti | V |
---|---|---|---|---|---|---|
x = 0.2 | 1 (DR) | 5.34 | 5.03 | 31.45 | 29.00 | 29.17 |
2 (ID) | 5.84 | 6.33 | 25.06 | 31.99 | 30.79 | |
x = 0.5 | 3 (DR) | 11.15 | 5.11 | 26.63 | 28.71 | 28.39 |
4 (ID) | 11.71 | 6.22 | 22.69 | 30.25 | 29.13 | |
x = 0.8 | 5 (DR) | 18.34 | 4.34 | 25.92 | 25.75 | 25.65 |
6 (ID) | 19.04 | 5.91 | 21.76 | 27.33 | 25.96 |
Temperature (°C) | Strength (MPa) | x = 0.2 | x = 0.5 | x = 0.8 |
---|---|---|---|---|
Room temperature | Yield strength | 978.3 | 951.3 | 1040 |
Compressive strength | 1199.5 | 1226.6 | 1209.5 | |
Fracture strain | >30% | >30% | 14.5% | |
1000 | Yield strength | 209 | 160 | 105 |
Compressive strength | 215 | 178 | 113 | |
Fracture strain | >30% | >30% | >30% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Li, Q.; Zhang, Z.; Zhang, R.; Xing, Y.; Han, D. Effect of Al Content on Microstructure and Properties of AlxCr0.2NbTiV Refractory High-Entropy Alloys. Entropy 2024, 26, 435. https://doi.org/10.3390/e26060435
Li R, Li Q, Zhang Z, Zhang R, Xing Y, Han D. Effect of Al Content on Microstructure and Properties of AlxCr0.2NbTiV Refractory High-Entropy Alloys. Entropy. 2024; 26(6):435. https://doi.org/10.3390/e26060435
Chicago/Turabian StyleLi, Rongbin, Qianqian Li, Zhixi Zhang, Rulin Zhang, Yue Xing, and Doudou Han. 2024. "Effect of Al Content on Microstructure and Properties of AlxCr0.2NbTiV Refractory High-Entropy Alloys" Entropy 26, no. 6: 435. https://doi.org/10.3390/e26060435
APA StyleLi, R., Li, Q., Zhang, Z., Zhang, R., Xing, Y., & Han, D. (2024). Effect of Al Content on Microstructure and Properties of AlxCr0.2NbTiV Refractory High-Entropy Alloys. Entropy, 26(6), 435. https://doi.org/10.3390/e26060435