Analysis of Vibration Characteristics of Bridge Structures under Seismic Excitation
Abstract
:1. Introduction
2. Methodology and Accuracy Metrics
2.1. The Theory of the ‘Inaction Method’
2.2. Singular Value Decomposition (SVD)
2.3. Information Entropy
- (1)
- The singular values corresponding to the ‘ambiguity points’ determined in the signal singular value difference spectrum shown in Figure 2 are selected for signal reconstruction.
- (2)
- The information entropy is calculated for each signal reconstructed in step (1).
- (3)
- The reconstruction signal with the smallest information entropy value in step (2) is determined as the most effective SVD reconstruction signal.
2.4. Data Processing Procedures
2.5. Accuracy Evaluation Metrics
3. Simulation Experiment
3.1. Introduction to the Simulation Experiment
3.2. Results and Discussion
4. A Case Study of the Su-Tong Yangtze River Bridge
4.1. The Seismic Event and Data Sources
4.1.1. Seismic Event
4.1.2. Data Source
4.2. Result and Discussion
4.2.1. Extracting the Main Frequency Vibration Signal
4.2.2. The Time-Frequency Characteristics of Structural Vibration Response Signal
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.W.; Li, X.J.; Wang, Z.F.; Shi, J.P.; Bao, E.H. Deep learning for P-wave arrival picking in earthquake early warning. Earthq. Eng. Eng. Vib. 2021, 20, 391–402. [Google Scholar] [CrossRef]
- Tiryakioglu, I.; Aktug, B.; Yigit, C.Ö.; Yavasoglu, H.H.; Sozbilir, H. Slip distribution and source parameters of the 20 July 2017 Bodrum-Kos earthquake (Mw6.6) from GPS observations. Geodin. Acta 2017, 30, 1–14. [Google Scholar] [CrossRef]
- Ruhl, C.J.; Melgar, D.; Grapenthin, R.; Allen, R.M. The value of real-time GNSS to earthquake early warning. Geophys. Res. Lett. 2017, 44, 8311–8319. [Google Scholar] [CrossRef]
- Li, Q.; Tan, K.; Wang, D.Z.; Zhao, B.; Zhang, R. Joint inversion of GNSS and teleseismic data for the rupture process of the 2017 M w6.5 Jiuzhaigou, China, earthquake. J. Seismol. 2018, 22, 805–814. [Google Scholar] [CrossRef]
- Chen, K.J.; Liu, Z.; Song, Y.T. Automated GNSS and Teleseismic Earthquake Inversion (AutoQuake Inversion) for Tsunami Early Warning: Retrospective and Real-Time Results. Pure Appl. Geophys. 2020, 177, 1403–1423. [Google Scholar] [CrossRef]
- Yao, Y.J.; Liu, L.T.; Wang, G.C. A Normal Time-Frequency Transform Method for Automatic Recognition of seismic Event. Geomat. Inf. Sci. Wuhan Univ. 2022, 47, 780–788. [Google Scholar] [CrossRef]
- Huang, S.X.; Yang, B.C.; You, X.P. Research on the application of GPS dynamic geometry monitoring system in bridge construction. Geomat. Inf. Sci. Wuhan Univ. 2009, 34, 1072–1075. [Google Scholar] [CrossRef]
- Magalhaes, F.; Cunha, A.; Caetano, E. Vibration based structural health monitoring of an arch bridge: From automated OMA to damage detection. Mech. Syst. Signal Process. 2012, 28, 212–228. [Google Scholar] [CrossRef]
- Ye, X.W.; Xi, P.S.; Su, Y.H. Stochastic characterization of wind field characteristics of an arch bridge instrumented with structural health monitoring system. Struct. Saf. 2018, 71, 47–56. [Google Scholar] [CrossRef]
- Petersen, O.W.; Oiseth, O.; Lourens, E. Investigation of dynamic wind loads on a long-span suspension bridge identified from measured acceleration data. J. Wind Eng. Ind. Aerodyn. 2020, 196, 104045. [Google Scholar] [CrossRef]
- Siringoringo, D.M.; Fujino, Y. Seismic response of a suspension bridge: Insights from long-term full-scale seismic monitoring system. Struct. Control Health Monit. 2018, 25, e2252. [Google Scholar] [CrossRef]
- Zhao, T.T. Seismic Vibration Mode Analysis of Cable-Stayed Bridge Based on Actual Monitoring Data. Master’s Thesis, Yanshan University, Qinhuangdao, China, 2022. [Google Scholar] [CrossRef]
- Tan, C.J.; Elhattab, A.; Uddin, N. “Drive-by’’ bridge frequency-based monitoring utilizing wavelet transform. J. Civ. Struct. Health Monit. 2017, 7, 615–625. [Google Scholar] [CrossRef]
- Oliveira, J.V.M.; Larocca, A.P.C.; Neto, J.O.D.; Cunha, A.L.; dos Santos, M.C. Vibration monitoring of a small concrete bridge using wavelet transforms on GPS data. J. Civ. Struct. Health Monit. 2019, 9, 397–409. [Google Scholar] [CrossRef]
- Xu, J.; Huang, S.X.; Ma, F.H. The Dynamic Characteristics Analysis for the Large Bridge Based on the Improved Hilbert-Huang Transformation. Geomat. Inf. Sci. Wuhan Univ. 2010, 35, 801–805. [Google Scholar]
- Li, J.T.; Guo, J.; Zhu, X.Q. Time-Varying Parameter Identification of Bridges Subject to Moving Vehicles Using Ridge Extraction Based on Empirical Wavelet Transform. Struct. Stab. Dyn. 2021, 21, 2150046. [Google Scholar] [CrossRef]
- Pan, H.; Azimi, M.; Yan, F.; Lin, Z.B. Time-Frequency-Based Data-Driven Structural Diagnosis and Damage Detection for Cable-Stayed Bridges. Bridge Eng. 2018, 23, 04018033. [Google Scholar] [CrossRef]
- Wang, X.P.; Zhao, Q.Z.; Xi, R.J.; Li, C.F.; Li, G.Q.; Li, L.A. Review of Bridge Structural Health Monitoring Based on GNSS: From Displacement Monitoring to Dynamic Characteristic Identification. IEEE Access 2021, 9, 80043–80065. [Google Scholar] [CrossRef]
- Wang, S.L.; Liu, G.Y.; Gao, M. Heterogeneous comprehensive learning and dynamic multiswarm particle swarm optimizer with two mutation operators. Inf. Sci. 2020, 540, 175–201. [Google Scholar] [CrossRef]
- Yi, R.; Li, X.J.; Zhu, S.Y.; Li, Y.L.; Xu, X.Y. A deep leaning method for dynamic vibration analysis of bridges subjected to uniform seismic excitation. Soil Dyn. Seism. Eng. 2023, 168, 107830. [Google Scholar] [CrossRef]
- Civera, M.; Surace, C. A Comparative Analysis of Signal Decomposition Techniques for Structural Health Monitoring on an Experimental Benchmark. Sensors 2021, 21, 1825. [Google Scholar] [CrossRef]
- Liu, L.T.; Hsu, H.; Grafarend, E.W. Normal morlet wavelet transform and its application to the Earth’s polar motion. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef]
- Bensana, T.; Mekhilef, S. Numerical and experimental analysis of vibratory signals for rolling bearing fault diagnosis. Mechanika 2016, 22, 217–224. [Google Scholar] [CrossRef]
- Chen, X.H.; Shi, X.H.; Liu, C.; Lou, W. Research on a Denoising Method of Vibration Signals Based on IMRSVD and Effective Component Selection. Energies 2022, 15, 9089. [Google Scholar] [CrossRef]
- Yin, X.B.; Xu, Y.; Sheng, X.W.; Shen, Y. Signal Denoising Method Using AIC-SVD and Its Application to Micro-Vibration in Reaction Wheels. Sensors 2019, 19, 5032. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.J.; Wei, H.J.; Zhou, D.P.; Li, J.M.; Liu, H. Reconstruction and information entropy analysis of frictional vibration signals in running-in progress. Ind. Lubr. Tribol. 2021, 73, 937–944. [Google Scholar] [CrossRef]
- Yu, H.; Wei, H. Information Entropy Analysis of Frictional Vibration under Different Wear States. Tribol. Trans. 2021, 65, 88–95. [Google Scholar] [CrossRef]
- Ying, Y.L.; Li, J.C.; Chen, Z.M.; Guo, J. Study on rolling bearing on-line reliability analysis based on vibration information processing. Comput. Electr. Eng. 2018, 69, 842–851. [Google Scholar] [CrossRef]
- Zhang, J.W.; Li, Z.Y.; Yan, P.; Li, Y.; Huang, J.L. The Method for Determining Optimal Analysis Length of Vibration Data Based on Improved Multiscale Permutation Entropy. Shock. Vib. 2021, 2021, 6654089. [Google Scholar] [CrossRef]
- Chen, X.J.; Yang, Y.M.; Cui, Z.X.; Shen, J. Wavelet Denoising for the Vibration Signals of Wind Turbines Based on Variational Mode Decomposition and Multiscale Permutation Entropy. IEEE Access 2020, 8, 40347–40356. [Google Scholar] [CrossRef]
- Liu, L.T.; Hsu, H. Inversion and normalization of time-frequency transform. Appl. Math. Inf. Sci. 2011, 6, 67–74. [Google Scholar]
- Cai, S.; Liu, L.T.; Wang, G.C. Short-term tidal level prediction using normal time-frequency transform. Ocean Eng. 2018, 156, 489–499. [Google Scholar] [CrossRef]
- Yao, Y.J.; Wang, G.C.; Liu, L.T. Microseismic signal denoising using simple bandpass filtering based on normal time-frequency transform. Acta Geophys. 2023, 71, 2217–2232. [Google Scholar] [CrossRef]
- Manzini, N.; Orcesi, A.; Thom, C.; Brossault, M.A.; Botton, S. Machine Learning Models Applied to a GNSS Sensor Network for Automated Bridge Anomaly Detection. Struct. Eng. 2022, 148, 04022171. [Google Scholar] [CrossRef]
- Yang, Z.X.; Zhong, J.H. A Hybrid EEMD-Based SampEn and SVD for Acoustic Signal Processing and Fault Diagnosis. Entropy 2016, 18, 112. [Google Scholar] [CrossRef]
- Iqbal, N.; Zerguine, A.; Kaka, S. Automated SVD filtering of time-frequency distribution for enhancing the SNR of microseismic/microquake events. J. Geophys. Eng. 2016, 13, 964–973. [Google Scholar] [CrossRef]
- Perraud, Y.; Chatzigogos, C.T.; Meza-Fajardo, K.C.; Labbé, P. Effect of Rayleigh waves on seismic response of bridge pylons via Incremental Dynamic Analyses. Soil Dyn. Earthq. Eng. 2022, 152, 107043. [Google Scholar] [CrossRef]
Reconstructed Signal 1 | Reconstructed Signal 2 | |||||||
---|---|---|---|---|---|---|---|---|
N | 2 | 6 | 8 | 6 | 8 | 16 | 20 | 24 |
Entropy | 3.5294 | 3.5805 | 3.5899 | 2.6903 | 2.8873 | 2.9752 | 3.1468 | 3.1317 |
Method | Signal | ||||||||
---|---|---|---|---|---|---|---|---|---|
Signal 1 | Signal 2 | Simulated Signal | |||||||
RMSE | r | SNR | RMSE | r | SNR | RMSE | r | SNR | |
Original signal | / | / | / | / | / | / | 0.1492 | 0.6094 | −2.0000 |
NTFT | 0.0126 | 0.9931 | 18.5152 | 0.0221 | 0.9161 | 7.5314 | 0.0236 | 0.9801 | 14.0228 |
NTFT-ESVD | 0.0085 | 0.9969 | 21.9291 | 0.0152 | 0.9252 | 10.8002 | 0.0159 | 0.9910 | 17.4611 |
Parameter | NTFT | NTFT-ESVD | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Signal 1 | Signal 2 | Signal 1 | Signal 2 | |||||||||
True Value | Calculate | Relative Error/% | True Value | Calculate | Relative Error/% | True Value | Calculate | Relative Error/% | True Value | Calculate | Relative Error/% | |
Amplitude/mm | 0.15 | 0.1592 | 6.1 | 0.20 | 0.1780 | 11 | 0.15 | 0.1495 | 0.3 | 0.20 | 0.1882 | 5.9 |
Frequency /Hz | 0.06 | 0.0612 | 2.0 | 0.15 | 0.1474 | 1.7 | 0.06 | 0.0594 | 1.0 | 0.15 | 0.1506 | 0.4 |
Beginning Time/s | 0 | 14.2 | 4.7 | 160 | 168.5 | 10.6 | 0 | 12.7 | 4.2 | 160 | 163.6 | 4.5 |
Ending Time/s | 300 | 281.6 | 6.1 | 240 | 230.2 | 12.2 | 300 | 282.9 | 5.7 | 240 | 235.2 | 6.0 |
Station | Epicenter Distance/km | Latitude/°N | Longitude/°E | Arrival Time | |
---|---|---|---|---|---|
P Wave | S Wave | ||||
ST-GPS | 1190 | 31.79 | 121.00 | 12:29:05.7 | 12:30:56.4 |
SSE | 1017 | 31.10 | 121.19 | 12:28:34.3 | 12:30:20.5 |
QZN | 1154 | 19.03 | 109.84 | 12:28:50.3 | 12:30:41.3 |
WHN | 1132 | 30.54 | 114.35 | 12:28:49.0 | 12:30:40.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Huang, S. Analysis of Vibration Characteristics of Bridge Structures under Seismic Excitation. Entropy 2024, 26, 465. https://doi.org/10.3390/e26060465
Li L, Huang S. Analysis of Vibration Characteristics of Bridge Structures under Seismic Excitation. Entropy. 2024; 26(6):465. https://doi.org/10.3390/e26060465
Chicago/Turabian StyleLi, Ling’ai, and Shengxiang Huang. 2024. "Analysis of Vibration Characteristics of Bridge Structures under Seismic Excitation" Entropy 26, no. 6: 465. https://doi.org/10.3390/e26060465
APA StyleLi, L., & Huang, S. (2024). Analysis of Vibration Characteristics of Bridge Structures under Seismic Excitation. Entropy, 26(6), 465. https://doi.org/10.3390/e26060465