A TCN-Linear Hybrid Model for Chaotic Time Series Forecasting
Abstract
:1. Introduction
2. Proposed Model
2.1. TCN
2.1.1. Causal Convolution
2.1.2. Dilated Convolution
2.1.3. Residual Connection
2.2. LSTF-Linear
2.3. TCN-Linear
3. Experimental Evaluation
3.1. Dataset
3.1.1. Lorenz
3.1.2. Mackey–Glass
3.1.3. Rossler
3.1.4. Google Stock Price
3.2. Experiment Settings
3.2.1. Experimental Configuration
3.2.2. Prediction Evaluation Index
3.3. Results
3.3.1. Lorenz
3.3.2. Mackey–Glass
3.3.3. Rossler
3.3.4. Google Stock Price
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ramadevi, B.; Bingi, K. Chaotic time series forecasting approaches using machine learning techniques: A review. Symmetry 2022, 14, 955. [Google Scholar] [CrossRef]
- Bayani, A.; Rajagopal, K.; Khalaf, A.J.M.; Jafari, S.; Leutcho, G.D.; Kengne, J. Dynamical analysis of a new multistable chaotic system with hidden attractor: Antimonotonicity, coexisting multiple attractors, and offset boosting. Phys. Lett. A 2019, 383, 1450–1456. [Google Scholar] [CrossRef]
- Khuntia, S.R.; Rueda, J.L.; Meijden, M.A. Forecasting the load of electrical power systems in mid-and long-term horizons: A review. IET Gener. Transm. Distrib. 2016, 10, 3971–3977. [Google Scholar] [CrossRef]
- Tian, Z. Preliminary research of chaotic characteristics and prediction of short-term wind speed time series. Int. J. Bifurc. Chaos 2020, 30, 2050176. [Google Scholar] [CrossRef]
- Pecora, L.M.; Carroll, T.L. Synchronization in chaotic systems. Phys. Rev. Lett. 1990, 64, 821. [Google Scholar] [CrossRef] [PubMed]
- Petropoulos, F.; Apiletti, D.; Assimakopoulos, V.; Babai, M.Z.; Barrow, D.K.; Taieb, S.B.; Bergmeir, C.; Bessa, R.J.; Bijak, J.; Boylan, J.E.; et al. Forecasting: Theory and practice. Int. J. Forecast. 2022, 38, 705–871. [Google Scholar]
- Mosavi, A.; Salimi, M.; Faizollahzadeh Ardabili, S.; Rabczuk, T.; Shamshirband, S.; Varkonyi-Koczy, A.R. State of the art of machine learning models in energy systems, a systematic review. Energies 2019, 12, 1301. [Google Scholar] [CrossRef]
- Bzdok, D.; Nichols, T.E.; Smith, S.M. Towards algorithmic analytics for large-scale datasets. Nat. Mach. Intell. 2019, 1, 296–306. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Sa-Ngasoongsong, A.; Beyca, O.; Le, T.; Yang, H.; Kong, Z.; Bukkapatnam, S.T. Time series forecasting for nonlinear and non-stationary processes: A review and comparative study. Iie Trans. 2015, 47, 1053–1071. [Google Scholar] [CrossRef]
- Amaranto, A.; Mazzoleni, M. B-AMA: A Python-coded protocol to enhance the application of data-driven models in hydrology. Environ. Model. Softw. 2023, 160, 105609. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S.E.; Bronstein, M.M.; Solomon, J.M. Dynamic graph cnn for learning on point clouds. ACM Trans. Graph. 2019, 38, 1–12. [Google Scholar] [CrossRef]
- Zhang, J.; Man, K.F. Time series prediction using RNN in multi-dimension embedding phase space. In SMC’98 Conference Proceedings, Proceedings of the 1998 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No. 98CH36218), San Diego, CA, USA, 14 October 1998; IEEE: Piscataway, NJ, USA, 1998; Volume 2, pp. 1868–1873. [Google Scholar]
- Yu, Y.; Si, X.; Hu, C.; Zhang, J. A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput. 2019, 31, 1235–1270. [Google Scholar] [CrossRef] [PubMed]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Proceedings of the Advances in Neural Information Processing Systems 30 (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Zeng, A.; Chen, M.; Zhang, L.; Xu, Q. Are transformers effective for time series forecasting? In Proceedings of the AAAI Conference on Artificial Intelligence, Washington, DC, USA, 7–14 February 2023; Volume 37, pp. 11121–11128. [Google Scholar] [CrossRef]
- Lim, B.; Zohren, S. Time-series forecasting with deep learning: A survey. Philos. Trans. R. Soc. A 2021, 379, 20200209. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhang, L.; Yao, M. Chaotic time series prediction of nonlinear systems based on various neural network models. Chaos Solitons Fractals 2023, 175, 113971. [Google Scholar] [CrossRef]
- Uribarri, G.; Mindlin, G.B. Dynamical time series embeddings in recurrent neural networks. Chaos Solitons Fractals 2022, 154, 111612. [Google Scholar] [CrossRef]
- Sangiorgio, M.; Dercole, F.; Guariso, G. Deep Learning in Multi-Step Prediction of Chaotic Dynamics: From Deterministic Models to Real-World Systems; Springer Nature: Berlin, Germany, 2022. [Google Scholar]
- Sangiorgio, M.; Dercole, F. Robustness of LSTM neural networks for multi-step forecasting of chaotic time series. Chaos Solitons Fractals 2020, 139, 110045. [Google Scholar] [CrossRef]
- Sangiorgio, M.; Dercole, F.; Guariso, G. Forecasting of noisy chaotic systems with deep neural networks. Chaos Solitons Fractals 2021, 153, 111570. [Google Scholar] [CrossRef]
- Pathak, J.; Hunt, B.; Girvan, M.; Lu, Z.; Ott, E. Model-free prediction of large spatiotemporally chaotic systems from data: A reservoir computing approach. Phys. Rev. Lett. 2018, 120, 024102. [Google Scholar] [CrossRef]
- Vlachas, P.R.; Pathak, J.; Hunt, B.R.; Sapsis, T.P.; Girvan, M.; Ott, E.; Koumoutsakos, P. Backpropagation algorithms and reservoir computing in recurrent neural networks for the forecasting of complex spatiotemporal dynamics. Neural Netw. 2020, 126, 191–217. [Google Scholar] [CrossRef]
- Patel, D.; Canaday, D.; Girvan, M.; Pomerance, A.; Ott, E. Using machine learning to predict statistical properties of non-stationary dynamical processes: System climate, regime transitions, and the effect of stochasticity. Chaos Interdiscip. J. Nonlinear Sci. 2021, 31, 033149. [Google Scholar] [CrossRef] [PubMed]
- Xia, M.; Shao, H.; Ma, X.; de Silva, C.W. A stacked GRU-RNN-based approach for predicting renewable energy and electricity load for smart grid operation. IEEE Trans. Ind. Inform. 2021, 17, 7050–7059. [Google Scholar] [CrossRef]
- Lazcano, A.; Herrera, P.J.; Monge, M. A combined model based on recurrent neural networks and graph convolutional networks for financial time series forecasting. Mathematics 2023, 11, 224. [Google Scholar] [CrossRef]
- Cao, J.; Li, Z.; Li, J. Financial time series forecasting model based on CEEMDAN and LSTM. Phys. A Stat. Mech. Its Appl. 2019, 519, 127–139. [Google Scholar] [CrossRef]
- Fu, K.; Li, H.; Deng, P. Chaotic time series prediction using DTIGNet based on improved temporal-inception and GRU. Chaos Solitons Fractals 2022, 159, 112183. [Google Scholar] [CrossRef]
- Qing, X.; Niu, Y. Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM. Energy 2018, 148, 461–468. [Google Scholar] [CrossRef]
- Xia, M.; Shao, H.; Ma, X.; de Silva, C.W. Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method. Renew. Energy 2016, 94, 629–636. [Google Scholar]
- Livieris, I.E.; Pintelas, E.; Pintelas, P. A CNN–LSTM model for gold price time-series forecasting. Neural Comput. Appl. 2020, 32, 17351–17360. [Google Scholar] [CrossRef]
- Fischer, T.; Krauss, C. Deep learning with long short-term memory networks for financial market predictions. Eur. J. Oper. Res. 2018, 270, 654–669. [Google Scholar] [CrossRef]
- Lv, S.X.; Wang, L. Deep learning combined wind speed forecasting with hybrid time series decomposition and multi-objective parameter optimization. Appl. Energy 2022, 311, 118674. [Google Scholar] [CrossRef]
- Zhang, W.; Lin, Z.; Liu, X. Short-term offshore wind power forecasting-A hybrid model based on Discrete Wavelet Transform (DWT), Seasonal Autoregressive Integrated Moving Average (SARIMA), and deep-learning-based Long Short-Term Memory (LSTM). Renew. Energy 2022, 185, 611–628. [Google Scholar] [CrossRef]
- Cheng, Y.; Xing, W.; Pedrycz, W.; Xian, S.; Liu, W. NFIG-X: Non-linear fuzzy information granule series for long-term traffic flow time series forecasting. IEEE Trans. Fuzzy Syst. 2023, 31, 3582–3597. [Google Scholar] [CrossRef]
- Lv, Y.; Duan, Y.; Kang, W.; Li, Z.; Wang, F.-Y. Traffic flow prediction with big data: A deep learning approach. IEEE Trans. Intell. Transp. Syst. 2014, 16, 865–873. [Google Scholar] [CrossRef]
- Bai, S.; Kolter, J.Z.; Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv 2018, arXiv:1803.01271. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Lorenz, E.N. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef]
- Mackey, M.C.; Glass, L. Oscillation and chaos in physiological control systems. Science 1977, 197, 287–289. [Google Scholar] [CrossRef] [PubMed]
- Rössler, O.E. An equation for continuous chaos. Phys. Lett. A 1976, 57, 397–398. [Google Scholar] [CrossRef]
- Sajjad, M.; Khan, Z.A.; Ullah, A.; Hussain, T.; Ullah, W.; Lee, M.Y.; Baik, S.W. A novel CNN-GRU-based hybrid approach for short-term residential load forecasting. IEEE Access 2020, 8, 143759–143768. [Google Scholar] [CrossRef]
- Schuster, M.; Paliwal, K.K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997, 45, 2673–2681. [Google Scholar] [CrossRef]
- Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. In Proceedings of the Advances in Neural Information Processing Systems 27 (NIPS 2014), Montreal, QC, Canada, 8–13 December 2014. [Google Scholar]
Parameters | Value |
---|---|
seed | 42 |
batch_size | 32 |
in_seq_len | 24 |
out_seq_len | 12 |
num_epochs | 500 |
learning_rate | 0.001 |
es_patience | 15 |
lr_patience | 5 |
kernel_size | 25 |
num_layers | 1 |
hidden_size | 64 |
train_ratio | 0.6 |
teaching_forcing_prob | 0.75 |
dropout | 0.2 |
criterion | nn.MSELoss |
optimizer | optim.Adam |
Index | TCN-Linear | Transformer | LSTM | RC |
---|---|---|---|---|
RMSE | 0.02595169 | 1.38334787 | 0.29731486 | 0.10683146 |
MAE | 0.01839166 | 1.03468537 | 0.19289005 | 0.07635882 |
MSE | 0.00067349 | 1.91365147 | 0.08839613 | 0.06396773 |
R2 | 0.99999064 | 0.97296977 | 0.99877666 | 0.99997096 |
parameter | 2853 | 234,435 | 17,859 | 13,689 |
epoch | 240 | 46 | 112 | 101 |
Index | TCN-Linear | Transformer | LSTM | RC |
---|---|---|---|---|
RMSE | 0.00018653 | 0.03591761 | 0.00122464 | 0.00094763 |
MAE | 0.00014705 | 0.02931397 | 0.00101639 | 0.00083345 |
MSE | 0.00000003 | 0.00129008 | 0.00000150 | 0.00000105 |
R2 | 0.99999941 | 0.97798753 | 0.99997440 | 0.99996435 |
parameter | 951 | 234,049 | 17,217 | 8735 |
epoch | 76 | 13 | 163 | 69 |
Index | TCN-Linear | Transformer | LSTM | RC |
---|---|---|---|---|
RMSE | 0.01509988 | 0.52885771 | 0.06465438 | 0.04373308 |
MAE | 0.00645125 | 0.31585521 | 0.03655762 | 0.04769310 |
MSE | 0.00022801 | 0.27969050 | 0.00418019 | 0.00374805 |
R2 | 0.99996984 | 0.97996159 | 0.99948332 | 0.99984731 |
parameter | 2853 | 234,435 | 17,859 | 10,176 |
epoch | 93 | 27 | 108 | 147 |
Index | TCN-Linear | CNN-GRU | Seq2Seq | Bi-LSTM |
---|---|---|---|---|
RMSE | 3.820 | 7.703 | 6.408 | 4.366 |
MAE | 2.918 | 5.730 | 4.621 | 4.200 |
MSE | 14.591 | 16.832 | 15.973 | 14.386 |
R2 | 0.976 | 0.921 | 0.964 | 0.953 |
MAPE | 2.793% | 5.964% | 4.389% | 3.763% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Qin, F. A TCN-Linear Hybrid Model for Chaotic Time Series Forecasting. Entropy 2024, 26, 467. https://doi.org/10.3390/e26060467
Wang M, Qin F. A TCN-Linear Hybrid Model for Chaotic Time Series Forecasting. Entropy. 2024; 26(6):467. https://doi.org/10.3390/e26060467
Chicago/Turabian StyleWang, Mengjiao, and Fengtai Qin. 2024. "A TCN-Linear Hybrid Model for Chaotic Time Series Forecasting" Entropy 26, no. 6: 467. https://doi.org/10.3390/e26060467
APA StyleWang, M., & Qin, F. (2024). A TCN-Linear Hybrid Model for Chaotic Time Series Forecasting. Entropy, 26(6), 467. https://doi.org/10.3390/e26060467