Refinements and Extensions of Ziv’s Model of Perfect Secrecy for Individual Sequences
Abstract
:1. Introduction
2. Formulation, Notations, and Background
3. More General Finite-State Discriminators
3.1. FSMs with Counters
3.2. Shift-Register Machines with Counters
3.3. Periodically Time-Varying FSMs with Counters
4. Side Information
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Proof of the Last Step of Equation (13)
References
- Kieffer, J.C.; Yang, E.-H. Sequential Codes, Lossless Compression of Individual Sequences, and Kolmogorov Complexity. IEEE Trans. Inform. Theory 1996, 42, 29–39. [Google Scholar] [CrossRef]
- Yang, E.-H.; Kieffer, J.C. Simple universal lossy data compression schemes derived from the Lempel–Ziv algorithm. IEEE Trans. Inform. Theory 1996, 42, 239–245. [Google Scholar] [CrossRef]
- Weinberger, M.J.; Merhav, N.; Feder, M. Optimal sequential probability assignment for individual sequences. IEEE Trans. Inform. Theory 1994, 40, 384–396. [Google Scholar] [CrossRef]
- Ziv, J. Coding theorems for individual sequences. IEEE Trans. Inform. Theory 1978, 24, 405–412. [Google Scholar] [CrossRef]
- Ziv, J. Distortion–rate theory for individual sequences. IEEE Trans. Inform. Theory 1980, 26, 137–143. [Google Scholar] [CrossRef]
- Ziv, J. Fixed-rate encoding of individual sequences with side information. IEEE Trans. Inform. Theory 1984, 30, 348–452. [Google Scholar] [CrossRef]
- Ziv, J.; Lempel, A. Compression of individual sequences via variable-rate coding. IEEE Trans. Inform. Theory 1978, 24, 530–536. [Google Scholar] [CrossRef]
- Martín, A.; Merhav, N.; Seroussi, G.; Weinberger, M.J. Twice–universal simulation of Markov sources and individual sequences. IEEE Trans. Inform. Theory 2010, 56, 4245–4255. [Google Scholar] [CrossRef]
- Seroussi, G. On universal types. IEEE Trans. Inform. Theory 2006, 52, 171–189. [Google Scholar] [CrossRef]
- Ziv, J. Compression, tests for randomness, and estimating the statistical model of an individual sequence. In Sequences: Combinatorics, Compression, Security, and Transmission; Capocelli, R.M., Ed.; Springer Verlag: New York, NY, USA, 1990; pp. 366–373. [Google Scholar]
- Feder, M.; Merhav, N.; Gutman, M. Universal prediction of individual sequences. IEEE Trans. Inform. Theory 1992, 38, 1258–1270. [Google Scholar] [CrossRef]
- Haussler, D.; Kivinen, J.; Warmuth, M.K. Sequential prediction of individual sequences under general loss functions. IEEE Trans. Inform. Theory 1998, 44, 1906–1925. [Google Scholar] [CrossRef]
- Weissman, T.; Merhav, N. Universal prediction of binary individual sequences in the presence of noise. IEEE Trans. Inform. Theory 2001, 47, 2151–2173. [Google Scholar] [CrossRef]
- Ziv, J.; Merhav, N. On context–tree prediction of individual sequences. IEEE Trans. Inform. Theory 2007, 53, 1860–1866. [Google Scholar] [CrossRef]
- Weissman, T.; Ordentlich, E.; Seroussi, G.; Verdú, S.; Weinberger, M.J. Universal denoising: Known channel. IEEE Trans. Inform. Theory 2005, 51, 5–28. [Google Scholar] [CrossRef]
- Lomnitz, Y.; Feder, M. Universal communication over individual channels. IEEE Trans. Inform. Theory 2011, 57, 7333–7358. [Google Scholar] [CrossRef]
- Lomnitz, Y.; Feder, M. Universal communication—Part I: Modulo additive channels. IEEE Trans. Inform. Theory 2013, 59, 5488–5510. [Google Scholar] [CrossRef]
- Shayevitz, O.; Feder, M. Communicating using feedback over a binary channel with arbitrary noise sequence. In Proceedings of the International Symposium on Information Theory, 2005—ISIT 2005, Adelaide, Australia, 4–9 September 2005; pp. 1516–1520. [Google Scholar]
- Shannon, C.E. Communication theory of secrecy systems. Bell Syst. J. 1948, 27, 479–523+623–656. [Google Scholar] [CrossRef]
- Hellman, M.E. An extension of the Shannon theory approach to cryptography. IEEE Trans. Inform. Theory 1977, 23, 289–294. [Google Scholar] [CrossRef]
- Lempel, A. Cryptology in transition. Comput. Surv. 1979, 11, 285–303. [Google Scholar] [CrossRef]
- Liang, Y.; Poor, H.V.; Shamai, S. Information theoretic security. Found. Trends Commun. Inf. Theory 2009, 5, 355–580. [Google Scholar] [CrossRef]
- Massey, J.L. An introduction to contemporary cryptology. Proc. IEEE 1988, 76, 533–549. [Google Scholar] [CrossRef]
- Yamamoto, H. Information theory in cryptology. IEICE Trans. 1991, E74, 2456–2464. [Google Scholar]
- Ziv, J. Perfect secrecy for individual sequences. Technion—Israel Institute of Technology, Technion City, Haifa, Israel. 1978; unpublished manuscript. [Google Scholar]
- Merhav, N. Perfectly secure encryption of individual sequences. IEEE Trans. Inform. Theory 2013, 59, 1302–1310. [Google Scholar] [CrossRef]
- Marcus, B.; Roth, R.; Siegel, P.H. Constrained Systems and Coding for Recording Channels; Technion-I.I.T. Department of Computer Science: Haifa, Israel, 1998. [Google Scholar]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Plotnik, E.; Weinberger, M.J.; Ziv, J. Upper bounds on the probability of sequences emitted by finite-state sources and on the redundancy of the Lempel-Ziv algorithm. IEEE Trans. Inform. Theory 1992, 38, 66–72. [Google Scholar] [CrossRef]
- Davisson, L.D.; Longo, G.; Sgarro, A. The error exponent for noiseless encoding of finite ergodic Markov sources. IEEE Trans. Inform. Theory 1981, 27, 431–438. [Google Scholar] [CrossRef]
- Natarajan, S. Large deviations, hypotheses testing, and source coding for finite Markov chains. IEEE Trans. Inform. Theory 1985, 31, 360–365. [Google Scholar] [CrossRef]
- Csiszár, I. The method of types. IEEE Trans. Inform. Theory 1998, 44, 2505–2523. [Google Scholar] [CrossRef]
- Ziv, J. Universal decoding for finite-state channels. IEEE Trans. Inform. Theory 1985, 31, 453–460. [Google Scholar] [CrossRef]
- Uyematsu, T.; Kuzuoka, S. Conditional Lempel-Ziv complexity and its application to source coding theorem with side information. IEICE Trans. Fundam. 2003; E86-A, 2615–2617. [Google Scholar]
- Merhav, N. Universal Slepian-Wolf coding for individual sequences. arXiv 2024, arXiv:2403.07409. [Google Scholar]
- Draper, S.C. Universal incremental Slepian–Wolf coding. In Proceedings of the 43rd Annual Allerton Conference, Monticello, IL, USA, 28–30 September 2004. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merhav, N. Refinements and Extensions of Ziv’s Model of Perfect Secrecy for Individual Sequences. Entropy 2024, 26, 503. https://doi.org/10.3390/e26060503
Merhav N. Refinements and Extensions of Ziv’s Model of Perfect Secrecy for Individual Sequences. Entropy. 2024; 26(6):503. https://doi.org/10.3390/e26060503
Chicago/Turabian StyleMerhav, Neri. 2024. "Refinements and Extensions of Ziv’s Model of Perfect Secrecy for Individual Sequences" Entropy 26, no. 6: 503. https://doi.org/10.3390/e26060503
APA StyleMerhav, N. (2024). Refinements and Extensions of Ziv’s Model of Perfect Secrecy for Individual Sequences. Entropy, 26(6), 503. https://doi.org/10.3390/e26060503