Tail Risk Dynamics under Price-Limited Constraint: A Censored Autoregressive Conditional Fréchet Model
Abstract
:1. Introduction
2. Methodology
2.1. Model Specification
- Linear: .
- Square: , where is a sign function.
- Exponential: and , where .
2.2. CAcF Model under a Factor Model Framework
- (a)
- Under a dynamic model, the tail index of evolves through time according to certain dynamics and . In addition, are random variables in the Domain of Attraction of Fréchet distribution with a tail index .
- (b)
- (c)
- .
2.3. Parameter Estimation
2.4. Prediction of Maximum Negative Return, Entropic Value at Risk, and Censored Probability
3. Empirical Analysis
3.1. Chinese Mainland Stock Market
3.1.1. Fitting Results for SSE50 and CSI300
3.1.2. Tail Risk Analysis and Forecasting Performance
3.2. Chinese Taiwan Stock Market
3.2.1. Fitting Results for TW50
3.2.2. Empirical Analysis on Widening Price Limits
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. The Significance of the Autoregression Coefficients
Coefficient | Significance |
---|---|
The location parameter in the conditional Fréchet distribution. | |
The constant term, determining the range of movement of process. | |
The autoregression coefficient for process. | |
The coefficient related to , representing the impact of through some observation-driven function on . | |
The compensation coefficient related to and the state , indicating the impact of hitting limit-down on . | |
The coefficient embedded in the observation-driven function of exponential type for process, which controls the shape of the function. | |
The constant term, determining the range of movement of process. | |
The autoregression coefficient for . | |
The coefficient related to , representing the impact of through some observation-driven function on . | |
The compensation coefficient related to and the state , indicating the impact of hitting limit-down on . | |
The coefficient embedded in the observation-driven function of exponential type for process, which controls the shape of the function. |
Appendix B. Proof of Proposition 1
Appendix C. The Confidence Intervals of and
Appendix D. Appendix of Empirical Results
Appendix D.1. Complementary Empirical Results for SSE50 and CSI300
Appendix D.2. Complementary Empirical Results for TW50
References
- Pichler, A.; Schlotter, R. Entropy based risk measures. Eur. J. Oper. Res. 2020, 285, 223–236. [Google Scholar] [CrossRef]
- Kou, S.; Peng, X. On the measurement of economic tail risk. Oper. Res. 2016, 64, 1056–1072. [Google Scholar] [CrossRef]
- Liu, F.; Wang, R. A theory for measures of tail risk. Math. Oper. Res. 2021, 46, 1109–1128. [Google Scholar] [CrossRef]
- Tan, K.; Chen, Y.; Chen, D. A New Risk Measure MMVaR: Properties and Empirical Research. J. Syst. Sci. Complex. 2023, 36, 2026–2045. [Google Scholar] [CrossRef]
- Zhu, D.; Zhang, C.; Pan, D. Extreme Risk Measurement of Carbon Market Considering Multifractal Characteristics. J. Syst. Sci. Complex. 2023, 36, 2497–2514. [Google Scholar] [CrossRef]
- Brennan, M.J. A theory of price limits in futures markets. J. Financ. Econ. 1986, 16, 213–233. [Google Scholar] [CrossRef]
- Veld-Merkoulova, Y.V. Price limits in futures markets: Effects on the price discovery process and volatility. Int. Rev. Financ. Anal. 2003, 12, 311–328. [Google Scholar] [CrossRef]
- Tang, S. Price limit performance: New evidence from a quasi-natural experiment in China’s ChiNext market. Int. Rev. Financ. Anal. 2023, 89, 102747. [Google Scholar] [CrossRef]
- Chan, S.H.; Kim, K.A.; Rhee, S.G. Price limit performance: Evidence from transactions data and the limit order book. J. Empir. Financ. 2005, 12, 269–290. [Google Scholar] [CrossRef]
- Chen, T.; Gao, Z.; He, J.; Jiang, W.; Xiong, W. Daily price limits and destructive market behavior. J. Econom. 2019, 208, 249–264. [Google Scholar] [CrossRef]
- Jin, S.; Zhou, C.; Peng, H. Does price limit reduce stock price volatility on the limit up and down day? Financ. Res. Lett. 2023, 58, 104302. [Google Scholar] [CrossRef]
- Kodres, L.E.; O’Brien, D.P. The existence of Pareto-superior price limits. Am. Econ. Rev. 1994, 84, 919–932. [Google Scholar]
- Fernandes, M.; Rocha, M. Are price limits on futures markets that cool? Evidence from the Brazilian Mercantile and Futures Exchange. J. Financ. Econom. 2007, 5, 219–242. [Google Scholar] [CrossRef]
- Deb, S.S.; Kalev, P.S.; Marisetty, V.B. Are price limits really bad for equity markets? J. Bank. Financ. 2010, 34, 2462–2471. [Google Scholar] [CrossRef]
- Wei, S.X. A censored–GARCH model of asset returns with price limits. J. Empir. Financ. 2002, 9, 197–223. [Google Scholar] [CrossRef]
- Hsieh, P.H.; Yang, J.J. A censored stochastic volatility approach to the estimation of price limit moves. J. Empir. Financ. 2009, 16, 337–351. [Google Scholar] [CrossRef]
- Embrechts, P.; Klüppelberg, C.; Mikosch, T. Modelling Extremal Events: For Insurance and Finance; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 33. [Google Scholar]
- McNeil, A.J.; Frey, R. Estimation of tail-related risk measures for heteroscedastic financial time series: An extreme value approach. J. Empir. Financ. 2000, 7, 271–300. [Google Scholar] [CrossRef]
- Pickands, J. Statistical inference using extreme order statistics. Ann. Stat. 1975, 3, 119–131. [Google Scholar]
- Oh, S.; Kee, H.; Park, K. Tail risk under price limits. Econ. Model. 2019, 77, 113–123. [Google Scholar] [CrossRef]
- Ji, J.; Wang, D.; Xu, D.; Xu, C. Combining a self-exciting point process with the truncated generalized Pareto distribution: An extreme risk analysis under price limits. J. Empir. Financ. 2020, 57, 52–70. [Google Scholar] [CrossRef]
- Massacci, D. Tail risk dynamics in stock returns: Links to the macroeconomy and global markets connectedness. Manag. Sci. 2017, 63, 3072–3089. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, Z.; Chen, R. Modeling maxima with autoregressive conditional Fréchet model. J. Econom. 2018, 207, 325–351. [Google Scholar] [CrossRef]
- Shen, Z.; Chen, Y.; Shi, R. Modeling tail index with autoregressive conditional Pareto model. J. Bus. Econ. Stat. 2022, 40, 458–466. [Google Scholar] [CrossRef]
- Andreoni, J.; Sprenger, C. Risk preferences are not time preferences. Am. Econ. Rev. 2012, 102, 3357–3376. [Google Scholar] [CrossRef]
- Rieger, M.O.; Wang, M.; Hens, T. Risk preferences around the world. Manag. Sci. 2015, 61, 637–648. [Google Scholar] [CrossRef]
- Schildberg-Hörisch, H. Are risk preferences stable? J. Econ. Perspect. 2018, 32, 135–154. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R.A.; Tippett, L.H.C. Limiting forms of the frequency distribution of the largest or smallest member of a sample. In Mathematical Proceedings of the Cambridge Philosophical Society; Cambridge University Press: Cambridge, UK, 1928; Volume 24, pp. 180–190. [Google Scholar]
- Gnedenko, B. Sur la distribution limite du terme maximum d’une serie aleatoire. Ann. Math. 1943, 44, 423–453. [Google Scholar] [CrossRef]
- Zakoian, J.M. Threshold heteroskedastic models. J. Econ. Dyn. Control. 1994, 18, 931–955. [Google Scholar] [CrossRef]
- Mas-Colell, A.; Whinston, M.D.; Green, J.R. Microeconomic Theory; Oxford University Press: New York, NY, USA, 1995; Volume 1. [Google Scholar]
- Fama, E.F.; French, K.R. Common risk factors in the returns on stocks and bonds. J. Financ. Econ. 1993, 33, 3–56. [Google Scholar] [CrossRef]
- Bai, J.; Ng, S. Evaluating latent and observed factors in macroeconomics and finance. J. Econom. 2006, 131, 507–537. [Google Scholar] [CrossRef]
- Fama, E.F.; French, K.R. A five-factor asset pricing model. J. Financ. Econ. 2015, 116, 1–22. [Google Scholar] [CrossRef]
- Leadbetter, M.R.; Lindgren, G.; Rootzén, H. Extremes and Related Properties of Random Sequences and Processes; Springer Series in Statistics; Springer: Berlin/Heidelberg, Germany, 1983. [Google Scholar]
- Rockafellar, R.T.; Uryasev, S. Conditional value-at-risk for general loss distributions. J. Bank. Financ. 2002, 26, 1443–1471. [Google Scholar] [CrossRef]
- Arici, G.; Campi, M.C.; Carè, A.; Dalai, M.; Ramponi, F.A. A theory of the risk for empirical CVaR with application to portfolio selection. J. Syst. Sci. Complex. 2021, 34, 1879–1894. [Google Scholar] [CrossRef]
SSE50 | CSI300 | |||||||
---|---|---|---|---|---|---|---|---|
CAcF-L | CAcF-S | CAcF-E | AcF | CAcF-L | CAcF-S | CAcF-E | AcF | |
*** | *** | *** | *** | *** | *** | |||
*** | *** | *** | *** | *** | *** | *** | ||
*** | *** | *** | 0.869 *** | *** | *** | *** | *** | |
*** | *** | *** | *** | *** | *** | |||
*** | − | *** | ** | *** | − | |||
− | − | |||||||
− | − | *** | *** | − | − | *** | ||
− | − | − | − | |||||
*** | *** | *** | *** | *** | *** | *** | ||
*** | *** | *** | *** | *** | *** | *** | *** | |
*** | *** | *** | *** | *** | *** | *** | ||
** | *** | − | *** | ** | *** | − | ||
− | − | |||||||
− | − | *** | *** | − | − | *** | ||
− | − | − | − |
SSE50 | ||||||
CosD | ||||||
MED | ||||||
CSI300 | ||||||
CosD | ||||||
MED |
SSE50 | CSI300 | |||||||
---|---|---|---|---|---|---|---|---|
CAcF-L | CAcF-S | CAcF-E | AcF | CAcF-L | CAcF-S | CAcF-E | AcF | |
MAE | ||||||||
MAPE | ||||||||
MCP |
Period I | Period II | |||||||
---|---|---|---|---|---|---|---|---|
CAcF-L | CAcF-S | CAcF-E | AcF | CAcF-L | CAcF-S | CAcF-E | AcF | |
*** | *** | *** | *** | *** | *** | |||
*** | *** | *** | *** | *** | *** | *** | ||
*** | *** | *** | *** | *** | *** | *** | *** | |
*** | *** | *** | *** | *** | *** | |||
* | *** | − | − | |||||
− | − | |||||||
− | − | *** | − | − | *** | |||
− | − | − | − | |||||
*** | *** | *** | * | *** | *** | *** | *** | |
*** | *** | *** | *** | *** | *** | *** | *** | |
*** | *** | *** | 4.120 ** | *** | *** | *** | *** | |
** | − | ** | − | |||||
− | − | |||||||
− | − | *** | − | − | *** | *** | ||
− | − | − | − |
Period I | ||||||
CosD | ||||||
MED | ||||||
Period II | ||||||
CosD | ||||||
MED |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, T.; Shu, L.; Chen, Y. Tail Risk Dynamics under Price-Limited Constraint: A Censored Autoregressive Conditional Fréchet Model. Entropy 2024, 26, 555. https://doi.org/10.3390/e26070555
Xu T, Shu L, Chen Y. Tail Risk Dynamics under Price-Limited Constraint: A Censored Autoregressive Conditional Fréchet Model. Entropy. 2024; 26(7):555. https://doi.org/10.3390/e26070555
Chicago/Turabian StyleXu, Tao, Lei Shu, and Yu Chen. 2024. "Tail Risk Dynamics under Price-Limited Constraint: A Censored Autoregressive Conditional Fréchet Model" Entropy 26, no. 7: 555. https://doi.org/10.3390/e26070555
APA StyleXu, T., Shu, L., & Chen, Y. (2024). Tail Risk Dynamics under Price-Limited Constraint: A Censored Autoregressive Conditional Fréchet Model. Entropy, 26(7), 555. https://doi.org/10.3390/e26070555