Status of Electromagnetically Accelerating Universe
Abstract
:1. Introduction to the EAU Model
2. Primordial Black Holes (PBHs)
2.1. Primordial Intermediate Mass Black Holes (PIMBHs) as Galactic Dark Matter
2.2. Primordial Supermassive Black Holes (PSMBHs) at Galactic Centers
3. Primordial Naked Singularities (PNSs)
Like-Sign-Charged Primordial Extremely Massive Naked Singularities (PEMNSs) and Accelerated Expansion: The EAU Model
4. Discussion
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frampton, P.H. On the Origin and Nature of Dark Matter. Int. J. Mod. Phys. 2018, A33, 1830030. [Google Scholar] [CrossRef]
- Einstein, A. Cosmological Considerations in the General Theory of Relativity. Sitz. Preuss. Akad. 1917, 142, 142–152. [Google Scholar]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Supernova Cosmology Project Collaboration; et al. Measurements of Ω and Λ from 42 High-Redshift Supernovae. Astrophys. J. 1999, 517, 565. [Google Scholar] [CrossRef]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Supernova Search Team; et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 1998, 116, 1009. [Google Scholar] [CrossRef]
- Novikov, I.D.; Zeldovic, Y.B. Cosmology. Ann. Rev. Astron. Astrophys. 1967, 5, 627. [Google Scholar] [CrossRef]
- Carr, B.J.; Hawking, S.W. Black Holes in the Early Universe. MNRAS 1974, 168, 399. [Google Scholar] [CrossRef]
- Chapline, G.F. Cosmological Effects of Primordial Black Holes. Nature 1975, 253, 251. [Google Scholar] [CrossRef]
- Einstein, A. Zur Allgemeinen Relativitätstheorie. Sitz. Preuss. Akad. 1915, 46, 799. [Google Scholar]
- Einstein, A. Erklärung der Perihelbewegung des Merkur. Biogr. Geogr. 1915, 47, 831. [Google Scholar]
- Einstein, A. Die Feldgleichungen der Gravitation. Sitzungsberichte Der Königlich Preußischen Akad. Der Wiss. 1915, 48, 844. [Google Scholar]
- Schwarzschild, K. On the Gravitational Field of a Mass Point According to Einstein’s Theory. Sitz. Preuss. Akad. 1916, 189–196. [Google Scholar]
- Reissner, H. Über die Eigengravitation des Elektrischen Feldes nach der Einsteinschen Theorie. Ann. Phys. 1916, 355, 106. [Google Scholar] [CrossRef]
- Nordstrom, G. On the Energy of the Gravitational Field in Einstein’s Theory. Verhandl. Koninki. Ned. Akad. 1918, 26, 1201. [Google Scholar]
- Kerr, R.P. Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics. Phys. Rev. Lett. 1963, 11, 237. [Google Scholar] [CrossRef]
- Frampton, P.H. Kerr-Newman and Electromagnetic Acceleration. arXiv 2023, arXiv:2308.04875. [Google Scholar]
- Frampton, P.H. Searching for Dark Matter Constituents with Many Solar Masses. Mod. Phys. Lett. 2016, A31, 1650093. [Google Scholar] [CrossRef]
- Zeldovich, Y.B.; Guseinov, O.H. Collapsed Stars in Binaries. Astrophys. J. 1966, 144, 840. [Google Scholar] [CrossRef]
- Trimble, V.L.; Thorne, K.S. Spectroscopic Binaries and Collapsed Stars. Astrophys. J. 1969, 156, 1013. [Google Scholar] [CrossRef]
- Zwicky, F. Die Rotverschiebung von Extragalaktischen Nebeln. Helv. Phys. Acta 1933, 6, 110. [Google Scholar]
- Zwicky, F. On the Masses of Nebulae and of Clusters of Nebulae. Astrophys. J. 1937, 86, 217. [Google Scholar] [CrossRef]
- Rubin, V.C.; Thonnard, N.; Ford, W.K., Jr. Rotational Properties of 21 SC Galaxies with a Large Range of Luminosities and Radii, from NGC4605 (R = 4 kpc) to UGC2885 (R = 122 kpc). Astrophys. J. 1980, 238, 471. [Google Scholar] [CrossRef]
- Alcock, C.; Allsman, R.A.; Alves, D.R.; Axelrod, T.S.; Becker, A.C.; Bennett, D.P.; Cook, K.H.; Dalal, N.; Drake, A.J.; MACHO Collaboration; et al. The MACHO Project: Microlensing Results from 5.7 Years of LMC Observations. Astrophys. J. 2000, 542, 281. [Google Scholar] [CrossRef]
- Tisser, P.; Le Guillou, L.; Afonso, C.; Albert, J.N.; Andersen, J.; Ansari, R.; Aubourg, E.; Bareyre, P.; Beaulieu, J.P.; EROS Collaboration; et al. Limits on the Macho Content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. Astron. Astrophys. 2007, 469, 387. [Google Scholar] [CrossRef]
- Paczynski, B. Gravitational Microlensing by the Galactic Halo. Astrophys. J. 1986, 304, 1. [Google Scholar] [CrossRef]
- Liddle, A.R.; Lyth, D.H. Cosmological Inflation and Large-Scale Structure; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Frampton, P.H.; Kawasaki, M.; Takahashi, F.; Yanagida, T.T. Primordial Black Holes as All Dark Matter. JCAP 2010, 4, 23. [Google Scholar] [CrossRef]
- Carr, B. The Primordial Black Hole Mass Spectrum. Astrophys. J. 1975, 201, 1. [Google Scholar] [CrossRef]
- Novikov, I.D.; Polnarev, A.G.; Starobinskii, A.A.; Zeldovich, Y.B. Primordial Black Holes. Astron. Astrophys. 1979, 80, 104. [Google Scholar]
- Xu, G.H.; Ostriker, J.P. Dynamics of Massive Black Holes as a Possible Candidate of Galactic Dark Matter. Astrophys. J. 1994, 437, 184. [Google Scholar] [CrossRef]
- Navarro, J.F.; Frenk, C.S.; White, S.D. A Universal Density Profile from Hierarchical Clustering. Astrophys. J. 1997, 490, 493. [Google Scholar] [CrossRef]
- Merritt, D. The Distribution of Dark Matter in the Coma Cluster. Astrophys. J. 1987, 313, 121. [Google Scholar] [CrossRef]
- Binggeli, B.; Sandage, A.; Tammann, G.A. Studies of the Virgo Cluster. 2. A Catalog of 2096 Galaxies in the Virgo Cluster Area. Astron. J. 1985, 90, 1681. [Google Scholar] [CrossRef]
- Mei, S.; Blakeslee, J.P.; Côté, P.; Tonry, J.L.; West, M.J.; Ferrarese, L.; Jordán, A.; Peng, E.W.; Anthony, A.; Merritt, D.; et al. The ACS Virgo Cluster Survey. 13. SBF Distance Catalog and the Three-Dimensional Structure of the Virgo Cluster. Astrophys. J. 2007, 655, 144. [Google Scholar] [CrossRef]
- Clowe, D.; Bradač, M.; Gonzalez, A.H.; Markevitch, M.; Randall, S.W.; Jones, C.; Zaritsky, D. A Direct Emprical Proof of the Existence of Dark Matter. Astrophys. J. Lett. 2006, 648, L109. [Google Scholar] [CrossRef]
- Araya, I.J.; Padilla, N.D.; Rubio, M.E.; Sureda, J.; Magaña, J.; Osorio, L. Dark Matter from Primordial Black Holes Would Hold Charge. JCAP 2023, 2, 30. [Google Scholar] [CrossRef]
- Frampton, P.H. Electromagnetic Accelerating Universe. Phys. Lett. 2022, B835, 137480. [Google Scholar] [CrossRef]
- Frampton, P.H. A Model of Dark Matter and Energy. Mod. Phys. Lett. 2023, A38, 2350032. [Google Scholar] [CrossRef]
- Carr, B.; Kühnel, F.; Visinelli, L. Constraints on Stupendously Large Black Holes. MNRAS 2021, 501, 2029. [Google Scholar] [CrossRef]
- Turner, M.S. Dark Matter and Dark Energy in the Universe. Phys. Scr. 2000, T85, 210. [Google Scholar] [CrossRef]
- Adame, A.G.; Aguilar, J.; Ahlen, S.; Alam, S.; Alexander, D.M.; Alvarez, M.; Alves, O.; Anand, A.; Rich, J.; DESI Collaboration; et al. DESI 2024 VI:Cosmological Constraints from the Measurements of Baryon Acoustic Oscillations. arXiv 2024, arXiv:2404.03002. [Google Scholar]
Time | |
---|---|
(2.0 | |
(1.0 | |
(700 | |
(230 | |
(7.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frampton, P.H. Status of Electromagnetically Accelerating Universe. Entropy 2024, 26, 629. https://doi.org/10.3390/e26080629
Frampton PH. Status of Electromagnetically Accelerating Universe. Entropy. 2024; 26(8):629. https://doi.org/10.3390/e26080629
Chicago/Turabian StyleFrampton, Paul H. 2024. "Status of Electromagnetically Accelerating Universe" Entropy 26, no. 8: 629. https://doi.org/10.3390/e26080629
APA StyleFrampton, P. H. (2024). Status of Electromagnetically Accelerating Universe. Entropy, 26(8), 629. https://doi.org/10.3390/e26080629