Generalized Kinetic Equations with Fractional Time-Derivative and Nonlinear Diffusion: H-Theorem and Entropy
Abstract
:1. Introduction
2. H-Theorem and Nonlinear Fractional Diffusion-like Equations
2.1. Some Solutions
2.2. Entropy Production
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Numerical Results
Appendix A.1. Explicit Method
Appendix A.2. Numerical Results
References
- Boltzmann, L. Further Studies on the Thermal Equilibrium of Gas Molecules. In The Kinetic Theory of Gases; World Scientific: Singapore, 2003; pp. 262–349. [Google Scholar]
- Maxwell, J.C. Illustrations of The Dynamical Theory of Gases. Philos. Mag. 1867, 19, 19–32. [Google Scholar] [CrossRef]
- Maxwell, J.C. On The Dynamical Theory of Gases. Philos. Trans. R. Soc. Lond. Ser. I 1867, 157, 49–88. [Google Scholar]
- Gibbs, J.W. Elementary Principles in Statistical Mechanics: Developed with Especial Reference to the Rational Foundation of Thermodynamics; Cambridge Library Collection—Mathematics, Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Brown, H.R.; Myrvold, W.; Uffink, J. Boltzmann’S H-Theorem, its Discontents, and The Birth of Statistical Mechanics. Stud. Hist. Philos. Sci. Part B Stud. Hist. Philos. Mod. Phys. 2009, 40, 174–191. [Google Scholar] [CrossRef]
- Cohen, E.G.D.; Thirring, W. The Boltzmann Equation: Theory and Applications. In Proceedings of the International Symposium “100 Years Boltzmann Equation”, Vienna, Austria, 4–8 September 1972; Springer: Berlin/Heidelberg, Germany, 1973. [Google Scholar]
- Chapman, S.; Cowling, T.G. The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion tn Gases; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Lenzi, E.; Mendes, R.; Da Silva, L. Statistical Mechanics Based on Renyi Entropy. Physica A 2000, 280, 337–345. [Google Scholar] [CrossRef]
- Rajagopal, A.; Abe, S. Implications of form Invariance to the Structure of Nonextensive Entropies. Phys. Rev. Lett. 1999, 83, 1711. [Google Scholar] [CrossRef]
- Kaniadakis, G.; Scarfone, A.; Sparavigna, A.; Wada, T. Composition Law of κ-Entropy for Statistically Independent Systems. Phys. Rev. E 2017, 95, 052112. [Google Scholar] [CrossRef]
- Tsallis, C. Nonadditive Entropy: The Concept and its Use. Eur. Phys. J. A 2009, 40, 257. [Google Scholar] [CrossRef]
- Evangelista, L.R.; Lenzi, E.K. Fractional Diffusion Equations and Anomalous Diffusion; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Hill, R.; Dissado, L. Debye and Non-Debye Relaxation. J. Phys. C Solid State Phys. 1985, 18, 3829. [Google Scholar] [CrossRef]
- Tateishi, A.A.; Ribeiro, H.V.; Lenzi, E.K. The Role of Fractional Time-Derivative Operators on Anomalous Diffusion. Front. Phys. 2017, 5, 52. [Google Scholar] [CrossRef]
- Caputo, M.; Fabrizio, M. A New Definition of Fractional Derivative without Singular Kernel. Prog. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Atangana, A.; Baleanu, D. New Fractional Derivatives with non-local and non-singular kernel. Therm. Sci. 2016, 20, 763–769. [Google Scholar] [CrossRef]
- Gómez-Aguilar, J.; Atangana, A. Fractional Hunter-Saxton Equation Involving Partial Operators with Bi-Order in Riemann-Liouville and Liouville-Caputo Sense. Eur. Phys. J. Plus 2017, 132, 100. [Google Scholar] [CrossRef]
- Höfling, F.; Franosch, T. Anomalous Transport in The Crowded World of Biological Cells. Rep. Prog. Phys. 2013, 76, 046602. [Google Scholar] [CrossRef] [PubMed]
- Sokolov, I.M. Models of Anomalous Diffusion in Crowded Environments. Soft Matter 2012, 8, 9043–9052. [Google Scholar] [CrossRef]
- Magin, R. Fractional Calculus in Bioengineering, Part 1. Crit. Rev. Biomed. Eng. 2004, 32, 104. [Google Scholar]
- Chavanis, P. Relaxation of a Test Particle in Systems with Long-Range Interactions: Diffusion Coefficient and Dynamical Friction. Eur. Phys. J. B-Condens. Matter Complex Syst. 2006, 52, 61–82. [Google Scholar] [CrossRef]
- Bologna, M.; Tsallis, C.; Grigolini, P. Anomalous Diffusion Associated with Nonlinear Fractional Derivative Fokker–Planck-like Equation: Exact Time-Dependent Solutions. Phys. Rev. E 2000, 62, 2213–2218. [Google Scholar] [CrossRef] [PubMed]
- Lukyanov, A.V.; Sushchikh, M.; Baines, M.J.; Theofanous, T. Superfast Nonlinear Diffusion: Capillary Transport in Particulate Porous Media. Phys. Rev. Lett. 2012, 109, 214501. [Google Scholar] [CrossRef] [PubMed]
- Aronson, D.G. The Porous Medium Equation. In Nonlinear Diffusion Problems; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1–46. [Google Scholar]
- Wedemann, R.; Plastino, A.; Tsallis, C. Curl forces and the nonlinear Fokker–Planck equation. Phys. Rev. E 2016, 94, 062105. [Google Scholar] [CrossRef]
- Tsallis, C.; Bukman, D.J. Anomalous Diffusion in the Presence Of External Forces: Exact Time-Dependent Solutions and their Thermostatistical Basis. Phys. Rev. E 1996, 54, R2197. [Google Scholar] [CrossRef]
- Drazer, G.; Wio, H.S.; Tsallis, C. Anomalous Diffusion with Absorption: Exact Time-Dependent Solutions. Phys. Rev. E 2000, 61, 1417–1422. [Google Scholar] [CrossRef]
- Frank, T.D. Nonlinear Fokker–Planck Equations: Fundamentals and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Saleh, M.; Kovács, E.; Barna, I.F.; Mátyás, L. New analytical results and comparison of 14 numerical schemes for the diffusion equation with space-dependent diffusion coefficient. Mathematics 2022, 10, 2813. [Google Scholar] [CrossRef]
- As, L.O.A.; Barna, I.F. General Self-Similar Solutions of Diffusion Equation and Related Constructions. Rom. J. Phys. 2022, 67, 101. [Google Scholar]
- Casas, G.; Nobre, F.; Curado, E. Entropy Production and Nonlinear Fokker–Planck Equations. Phys. Rev. E 2012, 86, 061136. [Google Scholar] [CrossRef]
- Schwämmle, V.; Curado, E.M.; Nobre, F.D. A General Nonlinear Fokker–Planck Equation and its Associated Entropy. Eur. Phys. J. B 2007, 58, 159–165. [Google Scholar] [CrossRef]
- Schwämmle, V.; Nobre, F.D.; Curado, E.M.F. Consequences of the H Theorem from Nonlinear Fokker–Planck Equations. Phys. Rev. E 2007, 76, 041123. [Google Scholar] [CrossRef]
- Plastino, A.; Wedemann, R.; Nobre, F. H-theorems for systems of coupled nonlinear Fokker–Planck equations. Europhys. Lett. 2022, 139, 11002. [Google Scholar] [CrossRef]
- Camacho, J.; Jou, D. H Theorem for Telegrapher type Kinetic Equations. Phys. Lett. A 1992, 171, 26–30. [Google Scholar] [CrossRef]
- Jou, D.; Casas-Vazquez, J.; Lebon, G. Extended Irreversible Thermodynamics Revisited (1988–98). Rep. Prog. Phys. 1999, 62, 1035. [Google Scholar] [CrossRef]
- Fernandez, A.; Baleanu, D. Classes of operators in fractional calculus: A case study. Math. Method Appl. Sci. 2021, 44, 9143–9162. [Google Scholar] [CrossRef]
- Gómez, J.F.; Torres, L.; Escobar, R.F. Fractional Derivatives with Mittag–Leffler Kernel; Springer: Cham, Switzerland, 2019. [Google Scholar]
- De Jagher, P. A hyperbolic “diffusion equation” taking a finite collision frequency into account. Phys. A Stat. Mech. Its Appl. 1980, 101, 629–633. [Google Scholar] [CrossRef]
- Bourret, R. Propagation of randomly perturbed fields. Can. J. Phys. 1962, 40, 782–790. [Google Scholar] [CrossRef]
- Cáceres, M.O.; Nizama, M. Stochastic telegrapher’s approach for solving the random Boltzmann-Lorentz gas. Phys. Rev. E 2022, 105, 044131. [Google Scholar] [CrossRef]
- Metzler, R.; Klafter, J. The Random Walk’s Guide to Anomalous Diffusion: A Fractional Dynamics Approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar] [CrossRef]
- Kenkre, V.M.; Montroll, E.W.; Shlesinger, M.F. Generalized Master Equations for Continuous-Time Random Walks. J. Stat. Phys. 1973, 9, 45–50. [Google Scholar] [CrossRef]
- Qi, H.; Guo, X. Transient Fractional Heat Conduction with Generalized Cattaneo Model. Int. J. Heat Mass Transf. 2014, 76, 535–539. [Google Scholar] [CrossRef]
- Plastino, A.R.; Wedemann, R.S.; Tsallis, C. Nonlinear Fokker–Planck equation for an overdamped system with drag depending on direction. Symmetry 2021, 13, 1621. [Google Scholar] [CrossRef]
- Lenzi, E.; Mendes, R.; Tsallis, C. Crossover in diffusion equation: Anomalous and normal behaviors. Phys. Rev. E 2003, 67, 031104. [Google Scholar] [CrossRef]
- Tateishi, A.; Lenzi, E.; Da Silva, L.; Ribeiro, H.; Picoli, S., Jr.; Mendes, R. Different diffusive regimes, generalized Langevin and diffusion equations. Phys. Rev. E 2012, 85, 011147. [Google Scholar] [CrossRef] [PubMed]
- Caspi, A.; Granek, R.; Elbaum, M. Enhanced Diffusion in Active Intracellular Transport. Phys. Rev. Lett. 2000, 85, 5655–5658. [Google Scholar] [CrossRef]
- Latora, V.; Rapisarda, A.; Ruffo, S. Superdiffusion and Out-of-Equilibrium Chaotic Dynamics with Many Degrees of Freedoms. Phys. Rev. Lett. 1999, 83, 2104–2107. [Google Scholar] [CrossRef]
- Wu, X.L.; Libchaber, A. Particle Diffusion in a Quasi-Two-Dimensional Bacterial Bath. Phys. Rev. Lett. 2000, 84, 3017–3020. [Google Scholar] [CrossRef] [PubMed]
- Norregaard, K.; Metzler, R.; Ritter, C.M.; Berg-Sørensen, K.; Oddershede, L.B. Manipulation and motion of organelles and single molecules in living cells. Chem. Rev. 2017, 117, 4342–4375. [Google Scholar] [CrossRef] [PubMed]
- Jou, D.; Casas-Vázquez, J.; Lebon, G.; Jou, D.; Casas-Vázquez, J.; Lebon, G. Extended Irreversible Thermodynamics; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Lebon, G.; Jou, D.; Casas-Vázquez, J. Understanding Non-Equilibrium Thermodynamics; Springer: Berlin/Heidelberg, Germany, 2008; Volume 295. [Google Scholar]
- Tsallis, C. Possible Generalization of Boltzmann–Gibbs Statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Tsallis, C.; Mendes, R. The Role of Constraints within Generalized Nonextensive Statistics. Phys. A Stat. Mech. Its Appl. 1998, 261, 534–554. [Google Scholar] [CrossRef]
- Kaniadakis, G. Relativistic Roots of κ-Entropy. Entropy 2024, 26, 406. [Google Scholar] [CrossRef] [PubMed]
- Tsallis, C. Non-Extensive Thermostatistics: Brief Review and Comments. Physica A 1995, 221, 277–290. [Google Scholar] [CrossRef]
- Chechkin, A.; Gorenflo, R.; Sokolov, I. Retarding Subdiffusion and Accelerating Superdiffusion Governed by Distributed-Order Fractional Diffusion Equations. Phys. Rev. E 2002, 66, 046129. [Google Scholar] [CrossRef] [PubMed]
- Wyld, H. Methods for Physics; Addison-Wesley: New York, NY, USA, 1993. [Google Scholar]
- Haubold, H.J.; Mathai, A.M.; Saxena, R.K. Mittag–Leffler Functions and their Applications. J. Appl. Math. 2011, 2011, 298628. [Google Scholar] [CrossRef]
- Smith, G.D. Numerical Solution of Partial Differential Equations, 3rd ed.; Oxford Applied Mathematics and Computing Science Series; Clarendon Press: Oxford, UK, 1985. [Google Scholar]
- Evangelista, L.R.; Lenzi, E.K. Nonlinear Fokker–Planck Equations, H-Theorem and Generalized Entropy of a Composed System. Entropy 2023, 25, 1357. [Google Scholar] [CrossRef]
- Jauregui, M.; Lucchi, A.L.; Passos, J.H.; Mendes, R.S. Stationary Solution and H Theorem for a Generalized Fokker–Planck Equation. Phys. Rev. E 2021, 104, 034130. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lenzi, E.K.; Rosseto, M.P.; Gryczak, D.W.; Evangelista, L.R.; da Silva, L.R.; Lenzi, M.K.; Zola, R.S. Generalized Kinetic Equations with Fractional Time-Derivative and Nonlinear Diffusion: H-Theorem and Entropy. Entropy 2024, 26, 673. https://doi.org/10.3390/e26080673
Lenzi EK, Rosseto MP, Gryczak DW, Evangelista LR, da Silva LR, Lenzi MK, Zola RS. Generalized Kinetic Equations with Fractional Time-Derivative and Nonlinear Diffusion: H-Theorem and Entropy. Entropy. 2024; 26(8):673. https://doi.org/10.3390/e26080673
Chicago/Turabian StyleLenzi, Ervin K., Michely P. Rosseto, Derik W. Gryczak, Luiz R. Evangelista, Luciano R. da Silva, Marcelo K. Lenzi, and Rafael S. Zola. 2024. "Generalized Kinetic Equations with Fractional Time-Derivative and Nonlinear Diffusion: H-Theorem and Entropy" Entropy 26, no. 8: 673. https://doi.org/10.3390/e26080673
APA StyleLenzi, E. K., Rosseto, M. P., Gryczak, D. W., Evangelista, L. R., da Silva, L. R., Lenzi, M. K., & Zola, R. S. (2024). Generalized Kinetic Equations with Fractional Time-Derivative and Nonlinear Diffusion: H-Theorem and Entropy. Entropy, 26(8), 673. https://doi.org/10.3390/e26080673