Motor Fault Diagnosis Based on Convolutional Block Attention Module-Xception Lightweight Neural Network
Abstract
:1. Introduction
2. Fundamentals
2.1. Basic Structure of Convolutional Neural Networks
2.1.1. Input Layer
- When we input the data into the neural network, the input layer receives data that generally consists of vibration, sound, image, and other data. For vibration data, the most common input formats are time series and 2D images.
- For 2D images (grayscale), the main role of the input layer is to determine the size of the image and the quantity of channel information.
- For raw data, another role of the input layer is to pre-process the data. For example, this includes normalization (to be input, the image is fixed within a particular range, such as between 0 and 1), standardization (so that the mean value of the image data is 0, the standard deviation is 1), and other types of pre-processing methods. Preprocessing the data ensures the speed of training and the reliable strength of the whole model.
2.1.2. Convolutional Layer
2.1.3. Pooling Layer
2.1.4. Fully Connected Layer
2.2. CBAM Attention Mechanism
2.2.1. Channeling Attention Mechanisms
2.2.2. Spatial Attention Mechanisms
2.2.3. Overall Workflow
2.3. Xception’s Network Structure
3. Motor Fault Diagnosis Method Based on Attention Mechanism and Lightweight Neural Network
- Use the vibration sensor in the motor fault diagnosis experimental platform to collect the vibration and current signals of the motor, but not at the same time;
- Convert these into separate Gram angle field diagrams to form a dataset, and randomly divide the dataset into a training set, a validation set, and a test set;
- Construct the CBAM–Xception model and initialize the training parameters of the model;
- Input the training samples into the CBAM–Xception model for training, and use the validation set to continuously optimize the model parameters until the completion of the iteration to obtain the trained model;
- Input the test samples into the trained CBAM–Xception model to complete motor fault diagnosis and obtain the diagnosis results.
4. Experiment and Analysis of Motor Fault Diagnosis
4.1. Principle of Self-Driving Vehicle Fault Diagnosis Experiment Platform Construction
4.2. Experimental Platform
4.3. Experimental Data Description
4.4. Performance Analysis of Fault Diagnosis Algorithms
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Cho, R.L.T.; Liu, J.S.; Ho, M.H.C. The development of autonomous driving technology: Perspectives from patent citation analysis. Transp. Rev. 2021, 41, 685–711. [Google Scholar] [CrossRef]
- Cao, H.R.; Shao, H.D.; Zhang, X.; Deng, Q.W.; Yang, X.K.; Xuan, J.P. Unsupervised domain-share CNN for machine fault transfer diagnosis from steady speeds to time-varying speeds. J. Manuf. Syst. 2022, 62, 186–198. [Google Scholar] [CrossRef]
- Rui, L.; Ding, X.X.; Wu, S.S.; Wu, Q.H.; Shao, Y.M. Signal processing collaborated with deep learning: An interpretable FIR Net for industrial intelligent diagnosis. Mech. Syst. Signal Process. 2024, 212, 111314. [Google Scholar] [CrossRef]
- Mai, T.T.; Jadun, P.; Logan, J.S.; McMillan, C.A.; Muratori, M.; Steinberg, D.C.; Vimmerstedt, L.J.; Haley, B.; Jones, R.; Nelson, B. Electrification Futures Study: Scenarios of Electric Technology Adoption and Power Consumption for the United States; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2018. [Google Scholar]
- Mohd Ghazali, M.H.; Rahiman, W. Vibration analysis for machine monitoring and diagnosis: A systematic review. Shock. Vib. 2021, 2021, 9469318. [Google Scholar] [CrossRef]
- Xie, F.Y.; Li, G.; Liu, H.; Sun, E.G.; Wang, Y. Advancing Early Fault Diagnosis for Multi-Domain Agricultural Machinery Rolling Bearings through Data Enhancement. Agriculture 2024, 14, 112. [Google Scholar] [CrossRef]
- Jiang, W.; Shan, Y.H.; Xue, X.M.; Ma, J.P.; Chen, Z.; Zhang, N. Fault Diagnosis for Rolling Bearing of Combine Harvester Based on Composite-Scale-Variable Dispersion Entropy and Self-Optimization Variational Mode Decomposition Algorithm. Entropy 2023, 25, 1111. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Sun, W.L.; Chang, S.K.; Zhang, K.N.; Ba, Y.J.; Jiang, R.B. Corn Harvester Bearing fault diagnosis based on ABC-VMD and optimized Efficient Net. Entropy 2023, 25, 1273. [Google Scholar] [CrossRef]
- Song, Y.; Du, J.; Li, S.; Long, Y.; Liang, D.; Liu, Y.; Wang, Y. Multi-Scale Feature Fusion Convolutional Neural Networks for Fault Diagnosis of Electromechanical Actuator. Appl. Sci. 2023, 13, 8689. [Google Scholar] [CrossRef]
- Hong, J.; Wang, Z.; Qu, C.; Ma, F.; Xu, X.; Yang, J.; Zhang, J.; Zhou, Y.; Shan, T.; Hou, Y. Fault Prognosis and Isolation of Lithium-ion Batteries in Electric Vehicles Considering Real-Scenario Thermal Runaway Risks. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 11, 88–99. [Google Scholar] [CrossRef]
- Xu, B.; Sun, L.; Xu, L.; Xu, G. An ESPRIT-SAA-based detection method for broken rotor bar fault in induction motors. IEEE Trans. Energy Convers. 2012, 27, 654–660. [Google Scholar] [CrossRef]
- Sun, Z.; Machlev, R.; Wang, Q.; Belikov, J.; Levron, Y.; Baimel, D. A public data-set for synchronous motor electrical faults diagnosis with CNN and LSTM reference classifiers. Energy AI 2023, 14, 100274. [Google Scholar] [CrossRef]
- Zhu, Z.; Lei, Y.; Qi, G.; Chai, Y.; Mazur, N.; An, Y.; Huang, X. A review of the application of deep learning in intelligent fault diagnosis of rotating machinery. Measurement 2022, 206, 112346. [Google Scholar] [CrossRef]
- Xie, F.; Li, G.; Song, C.; Song, M. The Early Diagnosis of Rolling Bearings’ Faults Using Fractional Fourier Transform Information Fusion and a Lightweight Neural Network. Fractal Fract. 2023, 7, 875. [Google Scholar] [CrossRef]
- Yang, T.; Li, G.; Wang, T.; Yuan, S.; Yang, X.; Yu, X.; Han, Q. A Novel 1D-Convolutional Spatial-Time Fusion Strategy for Data-Driven Fault Diagnosis of Aero-Hydraulic Pipeline Systems. Mathematics 2023, 11, 3113. [Google Scholar] [CrossRef]
- Gültekin, Ö.; Cinar, E.; Özkan, K.; Yazıcı, A. Real-Time Fault Detection and Condition Monitoring for Industrial Autonomous Transfer Vehicles Utilizing Edge Artificial Intelligence. Sensors 2022, 22, 3208. [Google Scholar] [CrossRef]
- Kaplan, H.; Tehrani, K.; Jamshidi, M. A Fault Diagnosis Design Based on Deep Learning Approach for Electric Vehicle Applications. Energies 2021, 14, 6599. [Google Scholar] [CrossRef]
- Guo, M.H.; Xu, T.X.; Liu, J.J.; Liu, Z.N.; Jiang, P.T.; Mu, T.J.; Zhang, S.-H.; Martin, R.R.; Cheng, M.-M.; Hu, S.-M. Attention mechanisms in computer vision: A survey. Comput. Vis. Media 2022, 8, 331–368. [Google Scholar] [CrossRef]
- Xie, F.; Wang, G.; Zhu, H.; Sun, E.; Fan, Q.; Wang, Y. Rolling Bearing Fault Diagnosis Based on SVD-GST Combined with Vision Transformer. Electronics 2023, 12, 3515. [Google Scholar] [CrossRef]
- Goncalves, T.; Rio-Torto, I.; Teixeira, L.F.; Cardoso, J.S. A survey on attention mechanisms for medical applications: Are we moving towards better algorithms. IEEE Access 2022, 10, 98909–98935. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, H.; Sun, X. Residual Life Prediction of Bearings Based on SENet-TCN and Transfer Learning. IEEE Access 2022, 10, 123007–123019. [Google Scholar] [CrossRef]
- Wang, H.W.; Fang, Z.W.; Wang, H.L.; Li, Y.A.; Geng, Y.D.; Chen, L.; Chang, X. A novel time-frequency analysis method for fault diagnosis based on generalized S-transform and synchroextracting transform. Meas. Sci. Technol. 2023, 35, 036101. [Google Scholar] [CrossRef]
- Cheng, H.; Zhang, Y.; Lu, W.; Yang, Z. A bearing fault diagnosis method based on VMD-SVD and Fuzzy clustering. Int. J. Pattern Recognit. Artif. Intell. 2019, 33, 1950018. [Google Scholar] [CrossRef]
- Xie, F.; Wang, L.; Zhu, H.; Xie, S. Research on a Rolling Bearing Fault Diagnosis Method Based on Multi-Source Deep Sub-Domain Adaptation. Appl. Sci. 2023, 13, 6800. [Google Scholar] [CrossRef]
- Wang, R.C.; Jia, X.S.; Liu, Z.C.; Dong, E.Z.; Li, S.Y.; Chen, Z.H. Conditional generative adversarial network based data augmentation for fault diagnosis of diesel engines applied with infrared thermography and deep convolutional neural network. Eksploatacja i Niezawodność 2024, 26, 175291. [Google Scholar] [CrossRef]
- Jamil, S.; Roy, A.M. An efficient and robust phonocardiography (PCG)-based valvular heart diseases (VHD) detection framework using vision transformer (VIT). Comput. Biol. Med. 2023, 158, 106734. [Google Scholar] [CrossRef]
- Wang, Y.G.; Zhou, J. Research on bearing fault diagnosis under mixed working condition based on Vision Transformer hybrid model. In International Conference on Computer Graphics, Artificial Intelligence, and Data Processing (ICCAID 2023), Qingdao, China, 1–3 December 2023; SPIE: Bellingham, WA, USA, 2024; Volume 13105, pp. 946–953. [Google Scholar]
- Liang, Z.G.; Zhang, L.J.; Wang, X.Z. A novel intelligent method for fault diagnosis of steam turbines based on T-SNE and XGBoost. Algorithms 2023, 16, 98. [Google Scholar] [CrossRef]
- Xie, F.; Sun, E.; Zhou, S.; Shang, J.; Wang, Y.; Fan, Q. Research on Three-Phase Asynchronous Motor Fault Diagnosis Based on Multiscale Weibull Dispersion Entropy. Entropy 2023, 25, 1446. [Google Scholar] [CrossRef]
- Xie, F.; Li, G.; Fan, Q.; Xiao, Q.; Zhou, S. Optimizing and Analyzing Performance of Motor Fault Diagnosis Algorithms for Autonomous Vehicles via Cross-Domain Data Fusion. Processes 2023, 11, 2862. [Google Scholar] [CrossRef]
- He, C.B.; Cao, Y.J.; Yang, Y.; Liu, Y.B.; Liu, X.Z.; Cao, Z. Fault diagnosis of rotating machinery based on the improved multidimensional normalization ResNet. IEEE Trans. Instrum. Meas. 2023, 72, 3524311. [Google Scholar] [CrossRef]
Parameter Name | Numerical | Parameter Name | Numerical |
---|---|---|---|
Rated power/KW | 3 | Rated speed (r/min) | 1430 |
Rated voltage/V | 380 | Polar logarithm | 2 |
Rated current/A | 6.78 | Connecting method | Y |
Number | Form | Number of Training Sets | Number of Validation Sets | Number of Test Sets |
---|---|---|---|---|
0 | End ring cracking 30 Hz | 400 × 1024 | 160 × 1024 | 240 × 1024 |
1 | End ring cracking 40 Hz | 400 × 1024 | 160 × 1024 | 240 × 1024 |
2 | Broken Rotor Bar 30 Hz | 400 × 1024 | 160 × 1024 | 240 × 1024 |
3 | Broken Rotor Bar 40 Hz | 400 × 1024 | 160 × 1024 | 240 × 1024 |
4 | Health 30 Hz | 400 × 1024 | 160 × 1024 | 240 × 1024 |
5 | Health 40 Hz | 400 × 1024 | 160 × 1024 | 240 × 1024 |
6 | Turn-to-turn short circuit 30 Hz | 400 × 1024 | 160 × 1024 | 240 × 1024 |
7 | Turn-to-turn short circuit 30 Hz | 400 × 1024 | 160 × 1024 | 240 × 1024 |
Number | Category | Number | Category |
---|---|---|---|
0 | End ring cracking 30 Hz | 4 | Health 30 Hz |
1 | End ring cracking 40 Hz | 5 | Health 40 Hz |
2 | Broken Rotor Bar 30 Hz | 6 | Turn-to-turn short circuit 30 Hz |
3 | Broken Rotor Bar 40 Hz | 7 | Turn-to-turn short circuit 30 Hz |
Model | Accuracy |
---|---|
CNN | 73.80% |
ResNet | 76.30% |
Xception | 93.96% |
CBAM-Xception | 98.23% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, F.; Fan, Q.; Li, G.; Wang, Y.; Sun, E.; Zhou, S. Motor Fault Diagnosis Based on Convolutional Block Attention Module-Xception Lightweight Neural Network. Entropy 2024, 26, 810. https://doi.org/10.3390/e26090810
Xie F, Fan Q, Li G, Wang Y, Sun E, Zhou S. Motor Fault Diagnosis Based on Convolutional Block Attention Module-Xception Lightweight Neural Network. Entropy. 2024; 26(9):810. https://doi.org/10.3390/e26090810
Chicago/Turabian StyleXie, Fengyun, Qiuyang Fan, Gang Li, Yang Wang, Enguang Sun, and Shengtong Zhou. 2024. "Motor Fault Diagnosis Based on Convolutional Block Attention Module-Xception Lightweight Neural Network" Entropy 26, no. 9: 810. https://doi.org/10.3390/e26090810
APA StyleXie, F., Fan, Q., Li, G., Wang, Y., Sun, E., & Zhou, S. (2024). Motor Fault Diagnosis Based on Convolutional Block Attention Module-Xception Lightweight Neural Network. Entropy, 26(9), 810. https://doi.org/10.3390/e26090810