Transport Numbers and Electroosmosis in Cation-Exchange Membranes with Aqueous Electrolyte Solutions of HCl, LiCl, NaCl, KCl, MgCl2, CaCl2 and NH4Cl
Abstract
:1. Introduction
2. Thermodynamic Framework
2.1. The Measurable Electric Potential
2.2. The Apparent Transport Number
2.3. The Permselectivity
3. Data Reduction
3.1. The Apparent Transport Number
3.2. The Permselectivity
4. Experimental Methods
5. Results and Discussion
5.1. The Apparent Transport Number
5.2. The Membrane Permselectivity
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bagastyo, A.Y.; Sinatria, A.Z.; Anggrainy, A.D.; Affandi, K.A.; Kartika, S.W.T.; Nurhayati, E. Resource recovery and utilization of bittern wastewater from salt production: A review of recovery technologies and their potential applications. Environ. Technol. Rev. 2021, 10, 294–321. [Google Scholar] [CrossRef]
- Borges, F.; Roux-de Balmann, H.; Guardani, R. Investigation of the mass transfer processes during the desalination of water containing phenol and sodium chloride by electrodialysis. J. Membr. Sci. 2008, 325, 130–138. [Google Scholar] [CrossRef]
- Zimmermann, P.; Wahl, K.; Tekinalp, Ö.; Solberg, S.B.B.; Deng, L.; Wilhelmsen, Ø.; Burheim, O.S. Selective recovery of silver ions from copper-contaminated effluents using electrodialysis. Desalination 2024, 572, 117108. [Google Scholar] [CrossRef]
- Campione, A.; Gurreri, L.; Ciofalo, M.; Micale, G.; Tamburini, A.; Cipollina, A. Electrodialysis for water desalination: A critical assessment of recent developments on process fundamentals, models and applications. Desalination 2018, 434, 121–160. [Google Scholar] [CrossRef]
- Bazinet, L. Electrodialytic phenomena and their applications in the dairy industry: A review. Crit. Rev. Food Sci. Nutr. 2005, 45, 307–326. [Google Scholar] [CrossRef] [PubMed]
- Singlande, E.; Roux-de Balmann, H.; Lefevbre, X.; Sperandio, M. Improvement of the treatment of salted liquid waste by integrated electrodialysis upstream biological treatment. Desalination 2006, 199, 64–66. [Google Scholar] [CrossRef]
- Galier, S.; Balmann, H.R. Demineralization of glucose solutions by electrodialysis: Influence of the ionic composition on the mass transfer and process performances. Can. J. Chem. Eng. 2015, 93, 378–385. [Google Scholar] [CrossRef]
- Elisseeva, T.; Shaposhnik, V.; Luschik, I. Demineralization and separation of amino acids by electrodialysis with ion-exchange membranes. Desalination 2002, 149, 405–409. [Google Scholar] [CrossRef]
- Shen, J.; Duan, J.; Liu, Y.; Lixin, Y.; Xing, X. Demineralization of glutamine fermentation broth by electrodialysis. Desalination 2005, 172, 129–135. [Google Scholar] [CrossRef]
- Thang, V.H.; Koschuh, W.; Kulbe, K.D.; Novalin, S. Detailed investigation of an electrodialytic process during the separation of lactic acid from a complex mixture. J. Membr. Sci. 2005, 249, 173–182. [Google Scholar] [CrossRef]
- Luiz, A.; McClure, D.D.; Lim, K.; Leslie, G.; Coster, H.G.; Barton, G.W.; Kavanagh, J.M. Potential upgrading of bio-refinery streams by electrodialysis. Desalination 2017, 415, 20–28. [Google Scholar] [CrossRef]
- Elmidaoui, A.; Lutin, F.; Chay, L.; Taky, M.; Tahaikt, M.; Hafidi, M.R. Removal of melassigenic ions for beet sugar syrups by electrodialysis using a new anion-exchange membrane. Desalination 2002, 148, 143–148. [Google Scholar] [CrossRef]
- Neytzell-de Wilde, F.G. Demineralization of a molassess distillery waste water. Desalination 1987, 67, 481–493. [Google Scholar] [CrossRef]
- Tedesco, A.T.M.; Cipollina, A.; Micale, G. Towards 1 kW power production in a reverse electrodialysis pilot plant with saline waters and concentrated brines. J. Membr. Sci. 2017, 522, 226–236. [Google Scholar] [CrossRef]
- Mei, Y.; Tang, C.Y. Recent developments and future perspectives of reverse electrodialysis technology: A review. Desalination 2018, 425, 156–174. [Google Scholar] [CrossRef]
- Luo, T.; Abdu, S.; Wessling, M. Selectivity of ion exchange membranes: A review. J. Membr. Sci. 2018, 555, 429–454. [Google Scholar] [CrossRef]
- Zlotorowicz, A.; Strand, R.; Burheim, O.; Wilhelmsen, Ø.; Kjelstrup, S. The permselectivity and water transference number of ion exchange membranes in reverse electrodialysis. J. Membr. Sci. 2017, 523, 402–408. [Google Scholar] [CrossRef]
- Solberg, S.; Zimmermann, P.; Wilhelmsen, Ø.; Lamb, J.J.; Bock, R.; Burheim, O.S. Heat to hydrogen by reverse electrodialysis; using a non-equilibrium thermodynamics model to evaluate hydrogen production concepts utilising waste heat. Energies 2022, 15, 6011. [Google Scholar] [CrossRef]
- Solberg, S.; Zimmermann, P.; Wilhelmsen, Ø.; Bock, R.; Burheim, O.S. Analytical treatment of ion-exchange permselectivity and transport number measurements for high accuracy. J. Membr. Sci. 2023, 685, 121904. [Google Scholar] [CrossRef]
- Solberg, S.B.; Wilhelmsen, Ø.; Burheim, O.S. Transport numbers of ion-exchange membranes in ternary mixtures of KCl, H2O and ethanol relevant for electrodialysis and desalination processes. Electrochim. Acta 2024, 506, 145018. [Google Scholar] [CrossRef]
- Kjelstrup, S.; Bedeaux, D. Non-Equilibrium Thermodynamics of Heterogeneous Systems; World Scientific: Singapore, 2008. [Google Scholar]
- De Groot, S.; Mazur, P. Non-Equilibrium Thermodynamics; Dover Books on Physics; Dover Publications: Mineola, NY, USA, 1984; ISBN 9780486647418. [Google Scholar]
- Jung, T.; Wang, A.A.; Monroe, C.W. Overpotential from cosolvent imbalance in battery electrolytes: Lipf6 in emc:ec. ACS Omega 2023, 8, 21133–21144. [Google Scholar] [CrossRef] [PubMed]
- Okada, T.; Nakamura, N.; Yuasa, M.; Sekine, I. Ion and water transport characteristics in membranes for polymer electrolyte fuel cells containing H+ and Ca2+ cations. J. Electrochem. Soc. 1997, 144, 2744. [Google Scholar] [CrossRef]
- Okada, T.; Møller-Holst, S.; Gorseth, O.; Kjelstrup, S. Transport and equilibrium properties of nafion® membranes with H+ and Na+ ions. J. Electroanal. Chem. 1998, 442, 137–145. [Google Scholar] [CrossRef]
- Okada, T.; Satou, H.; Okuno, M.; Yuasa, M. Ion and water transport characteristics of perfluorosulfonated ionomer membranes with H+ and alkali metal cations. J. Phys. Chem. B 2002, 106, 1267–1273. [Google Scholar] [CrossRef]
- Zawodzinski, T.A.; Derouin, C.; Radzinski, S.; Sherman, R.J.; Smith, V.T.; Springer, T.E.; Gottesfeld, S. Water uptake by and transport through nafion® 117 membranes. J. Electrochem. Soc. 1993, 140, 1041. [Google Scholar] [CrossRef]
- Fuller, T.F.; Newman, J. Experimental determination of the transport number of water in nafion 117 membrane. J. Electrochem. Soc. 1992, 139, 1332. [Google Scholar] [CrossRef]
- Xie, G.; Okada, T. Water transport behavior in nafion 117 membranes. J. Electrochem. Soc. 1995, 142, 3057. [Google Scholar] [CrossRef]
- Ottøy, M.; Førland, T.; Ratkje, S.K.; Møller-Holst, S. Membrane transference numbers from a new emf method. J. Membr. Sci. 1992, 74, 1–8. [Google Scholar] [CrossRef]
- Harned, H.S.; Owen, B.B. The Physical Chemistry of Electrolytic Solutions; American Chemical Society Monograph Series, 137; Reinhold Publishing Corporation: New York, NY, USA, 1958; ISBN 9780278917293. [Google Scholar]
- Solberg, S.B.; Gómez-Coma, L.; Wilhelmsen, Ø.; Forsberg, K.; Burheim, O.S. Electrodialysis for efficient antisolvent recovery in precipitation of critical metals and lithium-ion battery recycling. Chem. Eng. J. 2024, 486, 150281. [Google Scholar] [CrossRef]
- Berezina, N.P.; Kononenko, N.A.; Dyomina, O.A.; Gnusin, N.P. Characterization of ion-exchange membrane materials: Properties vs structure. Adv. Colloid Interface Sci. 2008, 139, 3–28. [Google Scholar] [CrossRef] [PubMed]
- Larchet, C.; Auclair, B.; Nikonenko, V. Approximate evaluation of water transport number in ion-exchange membranes. Electrochim. Acta 2004, 49, 1711–1717. [Google Scholar] [CrossRef]
- Hamer, W.J.; Wu, Y. Osmotic coefficients and mean activity coefficients of uni-univalent electrolytes in water at 25 °C. J. Phys. Chem. Ref. Data 1972, 1, 1047–1100. [Google Scholar] [CrossRef]
- Pitzer, K.S.; Mayorga, G. Thermodynamics of electrolytes. ii. activity and osmotic coefficients for strong electrolytes with one or both ions univalent. J. Phys. Chem. 1973, 77, 2300–2308. [Google Scholar] [CrossRef]
- Espinoza, C.; Kitto, D.; Kamcev, J. Counter-ion conductivity and selectivity trade-off for commercial ion-exchange membranes at high salinities. ACS Appl. Polym. Mater. 2023, 5, 10324–10333. [Google Scholar] [CrossRef]
- Box, G.; Hunter, J.; Hunter, W. Statistics for Experimenters: Design, Innovation, and Discovery; Wiley Series in Probability and Statistics; Wiley: Hoboken, NJ, USA, 2005; ISBN 9780471718130. [Google Scholar]
- Okada, T.; Kjelstrup Ratkje, S.; Hanche-Olsen, H. Water transport in cation exchange membranes. J. Membr. Sci. 1992, 66, 179–192. [Google Scholar] [CrossRef]
- Berezina, N.P.; Gnusin, N.; Dyomina, O.; Timofeyev, S. Water electrotransport in membrane systems. Experiment and model description. J. Membr. Sci. 1994, 86, 207–229. [Google Scholar] [CrossRef]
- Barragán, V.M.; Ruiz-Bauzá, C.; Villaluenga, J.P.G.; Seoane, B. Simultaneous electroosmotic and permeation flows through a Nafion membrane: 1. Aqueous electrolyte solutions. J. Colloid Interface Sci. 2004, 277, 176–183. [Google Scholar] [CrossRef]
- Nightingale, E.R.J. Phenomenological theory of ion solvation. effective radii of hydrated ions. J. Phys. Chem. 1959, 63, 1381–1387. [Google Scholar] [CrossRef]
HCl | LiCl | NaCl | KCl [19] | MgCl2 | CaCl2 | NH4Cl |
---|---|---|---|---|---|---|
() | ||||||
0.2 | 0.5 | 0.5 | 0.5 | 0.2 | 0.2 | 0.2 |
0.5 | 1 | 1 | 1 | 0.5 | 0.5 | 0.5 |
0.9 | 2 | 2 | 2 | 1.0 | 1.0 | 1 |
1.7 | 4 | 4 | 3 | 1.9 | 2.0 | 2 |
4.1 | 6 | 6 | 4.7 | 4.8 | 5.8 | 6 |
- | 8 | - | - | - | - | - |
HCl | 1.00 (±0.01) | 1.1 (±0.8) |
LiCl | 1.00 (±0.01) | 9.2 (±0.8) |
NaCl | 1.01 (±0.03) | 4.9 (±0.2) |
KCl | 0.99 (±0.01) | 3.7 (±0.4) |
MgCl2 | 1.00 (±0.01) | 8.5 (±0.5) |
CaCl2 | 1.00 (±0.01) | 6.2 (±0.6) |
NH4Cl | 1.00 (±0.01) | 3.8 (±0.5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solberg, S.B.B.; Deress, Z.B.; Hvamstad, M.H.; Burheim, O.S. Transport Numbers and Electroosmosis in Cation-Exchange Membranes with Aqueous Electrolyte Solutions of HCl, LiCl, NaCl, KCl, MgCl2, CaCl2 and NH4Cl. Entropy 2025, 27, 75. https://doi.org/10.3390/e27010075
Solberg SBB, Deress ZB, Hvamstad MH, Burheim OS. Transport Numbers and Electroosmosis in Cation-Exchange Membranes with Aqueous Electrolyte Solutions of HCl, LiCl, NaCl, KCl, MgCl2, CaCl2 and NH4Cl. Entropy. 2025; 27(1):75. https://doi.org/10.3390/e27010075
Chicago/Turabian StyleSolberg, Simon B. B., Zelalem B. Deress, Marte H. Hvamstad, and Odne S. Burheim. 2025. "Transport Numbers and Electroosmosis in Cation-Exchange Membranes with Aqueous Electrolyte Solutions of HCl, LiCl, NaCl, KCl, MgCl2, CaCl2 and NH4Cl" Entropy 27, no. 1: 75. https://doi.org/10.3390/e27010075
APA StyleSolberg, S. B. B., Deress, Z. B., Hvamstad, M. H., & Burheim, O. S. (2025). Transport Numbers and Electroosmosis in Cation-Exchange Membranes with Aqueous Electrolyte Solutions of HCl, LiCl, NaCl, KCl, MgCl2, CaCl2 and NH4Cl. Entropy, 27(1), 75. https://doi.org/10.3390/e27010075