Novel Method for Determining Standard Enthalpy and Entropy of Volatilisation of Chromia Exposed to Humidified Oxygen at 298 K Based on Transport Theory of Multicomponent Gas Mixtures
Abstract
:1. Introduction
2. Theoretical Background
3. Experimental Section
4. Results and Discussion
4.1. Determination of Standard Enthalpy and Entropy of Cr Species Volatilisation in Humidified Oxygen at 298 K
4.2. Assessment of Thermodynamic Data Taken from Different Sources on the Calculated Mass Flux of Cr Loss Due to Volatilisation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Shen, M.; Zhang, P. Progress and challenges of cathode contact layer for solid oxide fuel cell. Int. J. Hydrogen Energy 2020, 45, 33876–33894. [Google Scholar] [CrossRef]
- Su, Z.; Yang, L.; Zhao, N. Multi-criteria assessment of an environmentally-friendly scheme integrating solid oxide fuel cell hybrid power and renewable energy auxiliary supply. J. Clean. Prod. 2022, 369, 133410. [Google Scholar] [CrossRef]
- Zhao, Q.; Geng, S.; Zhang, Y.; Chen, G.; Zhu, S.; Wang, F. High-entropy FeCoNiMnCu alloy coating on ferritic stainless steel for solid oxide fuel cell interconnects. J. Alloys Compd. 2022, 908, 164608. [Google Scholar] [CrossRef]
- Wang, Q.; Fan, H.; Xiao, Y.; Zhang, Y. Applications and recent advances of rare earth in solid oxide fuel cells. J. Rare Earths 2022, 40, 1668–1681. [Google Scholar] [CrossRef]
- Goebel, C.; Berger, R.; Bernuy-Lopez, C.; Westlinder, J.; Svensson, J.-E.; Froitzheim, J. Long-term (4 year) degradation behavior of coated stainless steel 441 used for solid oxide fuel cell interconnect applications. J. Power Sources 2020, 449, 227480. [Google Scholar] [CrossRef]
- Fallah Vostakola, M.; Amini Horri, B. Progress in material development for low-temperature solid oxide fuel cells: A review. Energies 2021, 14, 1280. [Google Scholar] [CrossRef]
- Gunduz, K.O.; Chyrkin, A.; Goebel, C.; Hansen, L.; Hjorth, O.; Svensson, J.-E.; Froitzheim, J. The effect of hydrogen on the breakdown of the protective oxide scale in solid oxide fuel cell interconnects. Corros. Sci. 2021, 179, 109112. [Google Scholar] [CrossRef]
- Manjunath, N.; Santhy, K.; Rajasekaran, B. Thermal expansion of Crofer 22 APU steel used for SOFC interconnect using in-situ high temperature X-ray diffraction. Mater. Today Proc. 2023; in press. [Google Scholar] [CrossRef]
- Reddy, M.J.; Visibile, A.; Svensson, J.-E.; Froitzheim, J. Investigation of coated FeCr steels for application as solid oxide fuel cell interconnects under dual-atmosphere conditions. Int. J. Hydrogen Energy 2023, 48, 14406–14417. [Google Scholar] [CrossRef]
- Ko, Y.S.; Kim, S.; Park, S.; Kim, B.K.; Shim, J.-H.; Hong, J.; Lee, Y.-S.; Han, H.N.; Kim, D.-I. Effect of the simultaneous addition of lanthanum and nickel on the oxidation behavior and related area-specific resistance of ferritic stainless steels for solid oxide fuel cell interconnects. Corros. Sci. 2024, 233, 112098. [Google Scholar] [CrossRef]
- Wang, Z.; Li, C.; Si, X.; Liu, Y.; Qi, J.; Huang, Y.; Feng, J.; Cao, J. Oxidation behavior of ferritic stainless steel interconnect coated by a simple diffusion bonded cobalt protective layer for solid oxide fuel cells. Corros. Sci. 2020, 172, 108739. [Google Scholar] [CrossRef]
- Chandra-ambhorn, S.; Homjabok, W.; Chandra-ambhorn, W.; Thublaor, T.; Siripongsakul, T. Oxidation and volatilisation behaviour of a type 430 stainless steel coated by Mn-Co oxide by slurry method with pre-oxidation for SOFC interconnect application. Corros. Sci. 2021, 187, 109506. [Google Scholar] [CrossRef]
- Hodjati-Pugh, O.; Dhir, A.; Steinberger-Wilckens, R. The development of current collection in micro-tubular solid oxide fuel cells—A review. Appl. Sci. 2021, 11, 1077. [Google Scholar] [CrossRef]
- Mohamed, S.M.; Sanad, M.M.; Mattar, T.; El-Shahat, M.F.; Rossignol, C.; Dessemond, L.; Zaidat, K.; Obbade, S. The structural, thermal and electrochemical properties of MnFe1−x−yCuxNiyCoO4 spinel protective layers in interconnects of solid oxide fuel cells (SOFCs). J. Alloys Compd. 2022, 923, 166351. [Google Scholar] [CrossRef]
- Aznam, I.; Mah, J.C.W.; Muchtar, A.; Somalu, M.R.; Ghazali, M.J. Electrophoretic deposition of (Cu,Mn,Co)3O4 spinel coating on SUS430 ferritic stainless steel: Process and performance evaluation for solid oxide fuel cell interconnect applications. J. Eur. Ceram. Soc. 2021, 41, 1360–1373. [Google Scholar] [CrossRef]
- Reddy, M.J.; Chausson, T.E.; Svensson, J.E.; Froitzheim, J. 11–23% Cr steels for solid oxide fuel cell interconnect applications at 800 °C—How the coating determines oxidation kinetics. Int. J. Hydrogen Energy 2023, 48, 12893–12904. [Google Scholar] [CrossRef]
- Li, J.; Zou, M.; Chen, W.; Hu, X.; Zhou, J.; Jiang, X. Diffusion behavior and electrical performance of La2O3 doped Ni-Co films and their application as metallic interconnection of solid oxide fuel cell. Thin Solid Films 2023, 768, 139692. [Google Scholar] [CrossRef]
- Vayyala, A.; Povstugar, I.; Naumenko, D.; Quadakkers, W.J.; Hattendorf, H.; Mayer, J. Effect of gas composition on the oxide scale growth mechanisms in a ferritic steel for solid oxide cell interconnects. Corros. Sci. 2023, 221, 111317. [Google Scholar] [CrossRef]
- Zhang, K.; El-Kharouf, A.; Hong, J.-E.; Steinberger-Wilckens, R. The effect of aluminium addition on the high-temperature oxidation behaviour and Cr evaporation of aluminised and alumina-forming alloys for SOFC cathode air pre-heaters. Corros. Sci. 2020, 169, 108612. [Google Scholar] [CrossRef]
- Hilpert, K.; Das, D.; Miller, M.; Peck, D.H.; Weib, R. Chromium vapor species over solid oxide fuel cell interconnect materials and their potential for degradation processes. J. Electrochem. Soc. 1996, 143, 3642–3647. [Google Scholar] [CrossRef]
- Stanislowski, M.; Wessel, E.; Hilpert, K.; Markus, T.; Singheiser, L. Chromium vaporization from high-temperature alloys: I. Chromia-forming steels and the influence of outer oxide layers. J. Electrochem. Soc. 2007, 154, A295. [Google Scholar] [CrossRef]
- Opila, E.J.; Myers, D.L.; Jacobson, N.S.; Nielsen, I.M.; Johnson, D.F.; Olminsky, J.K.; Allendorf, M.D. Theoretical and experimental investigation of the thermochemistry of CrO2(OH)2(g). J. Phys. Chem. A 2007, 111, 1971–1980. [Google Scholar] [CrossRef]
- Reddy, M.J.; Svensson, J.-E.; Froitzheim, J. Evaluating candidate materials for balance of plant components in SOFC: Oxidation and Cr evaporation properties. Corros. Sci. 2021, 190, 109671. [Google Scholar] [CrossRef]
- Bauschlicher, C.W., Jr.; Jacobson, N.S.; Myers, D.L.; Opila, E.J. Computational chemistry derivation of Cr, Mn, and La hydroxide and oxyhydroxide thermodynamics. J. Phys. Chem. A 2022, 126, 1551–1561. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yu, G.; Zeng, S.; Parbey, J.; Xiao, S.; Li, B.; Li, T.; Andersson, M. Mechanism of chromium poisoning the conventional cathode material for solid oxide fuel cells. J. Power Sources 2018, 381, 26–29. [Google Scholar] [CrossRef]
- Abdoli, H.; Molin, S.; Farnoush, H. Effect of interconnect coating procedure on solid oxide fuel cell performance. Mater. Lett. 2020, 259, 126898. [Google Scholar] [CrossRef]
- Zarabi Golkhatmi, S.; Asghar, M.I.; Lund, P.D. A review on solid oxide fuel cell durability: Latest progress, mechanisms, and study tools. Renew. Sustain. Energy Rev. 2022, 161, 112339. [Google Scholar] [CrossRef]
- Whiston, M.M.; Azevedo, I.M.; Litster, S.; Samaras, C.; Whitefoot, K.S.; Whitacre, J.F. Meeting US solid oxide fuel cell targets. Joule 2019, 3, 2060–2065. [Google Scholar] [CrossRef]
- Chandra-ambhorn, S. Understanding and combating chromium poisoning for the long life of solid oxide fuels cells. J. King Mongkuts Univ. Technol. North Bangk. 2020, 30, 557–559. [Google Scholar] [CrossRef]
- Young, D.J.; Pint, B.A. Chromium volatilization rates from Cr2O3 scales into flowing gases containing water vapor. Oxid. Met. 2006, 66, 137–153. [Google Scholar] [CrossRef]
- Homjabok, W.; Tengprasert, W.; Thublaor, T.; Wiman, P.; Nilsonthi, T.; Yan, J.; Yang, Z.; Chandra-ambhorn, W.; Chandra-ambhorn, S. Effects of temperature and water vapour on Cr-species volatilisation, oxidation and scale adhesion of a Type 409L stainless steel for application as interconnect of low temperature solid oxide fuel cells. Corros. Sci. 2024, 233, 112069. [Google Scholar] [CrossRef]
- Sarrazin, P.; Galerie, A.; Fouletier, J. Mechanism of High Temperature Corrosion: A Kinetic Approach; Trans Tech Publications: Baech, Switzerland, 2008. [Google Scholar]
- Ebbinghaus, B.B. Thermodynamics of gas phase chromium species: The chromium oxides, the chromium oxyhydroxides, and volatility calculations in waste incineration processes. Combust. Flame 1993, 93, 119–137. [Google Scholar] [CrossRef]
- Thublaor, T.; Wiman, P.; Siripongsakul, T.; Chandra-ambhorn, S. Development of annealed Mn-Co and Mn-Co-Cu coated AISI 430 stainless steels for SOFC interconnect application. Oxid. Met. 2021, 96, 93–103. [Google Scholar] [CrossRef]
- Welty, J.R.; Rorrer, G.L.; Foster, D.G. Fundamentals of Momentum, Heat, and Mass Transfer, 7th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Bird, R.B.; Stewart, W.E.; Lightfoot, E.N. Transport Phenomena, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Elliott, J.R.; Diky, V.; Knotts, T.A.; Wilding, W.V. The Properties of Gases and Liquids, 6th ed.; McGraw-Hill: Maidenhead, UK, 2023. [Google Scholar]
- Hirschfelder, J.O.; Bird, R.B.; Spotz, E.L. The transport properties of gases and gaseous mixtures, II. Chem. Rev. 1949, 44, 205–231. [Google Scholar] [CrossRef]
- Barin, I. Thermochemical Data of Pure Substances, 3rd ed.; VCH: Weinheim, Germany, 1995. [Google Scholar]
- Neufeld, P.D.; Janzen, A.; Aziz, R.A. Empirical equations to calculate 16 of the transport collision integrals Ω(l, s)* for the Lennard-Jones (12–6) potential. J. Chem. Phys. 1972, 57, 1100–1102. [Google Scholar] [CrossRef]
- Kubaschewski, O.; Alcock, C.B.; Spencer, P.J. Materials Thermochemistry, 6th ed.; Pergamon: London, UK, 1993. [Google Scholar]
- Cohen, E.R.; Cvitaš, T.; Frey, J.G.; Holmström, B.; Kuchitsu, K.; Marquardt, R.; Mills, I.; Pavese, F.; Quack, M.; Stohnor, J.; et al. Quantities, Units and Symbols in Physical Chemistry, 3rd ed.; Royal Society of Chemistry: London, UK, 2007. [Google Scholar]
- Prigogine, I.; Defay, R. Chemical Thermodynamics; Longmans: London, UK, 1954. [Google Scholar]
- Atkins, P.W.; De Paula, J.; Keeler, J. Physical Chemistry, 12th ed.; Oxford University Press: Oxford, UK, 2023. [Google Scholar]
- Kofstad, P. High Temperature Corrosion; Elsevier: London, UK, 1988. [Google Scholar]
Gaseous Species | (g mol–1) | (Å) | (K) | |||
---|---|---|---|---|---|---|
Value | Ref. | Value | Ref. | Value | Ref. | |
CrO2(OH)2 | 118.01 | [39] | 4.5 | [30] | 340 | [30] |
Ar | 39.9480 | [39] | 3.542 | [37] | 93.3 | [37] |
O2 | 31.9988 | [39] | 3.467 | [37] | 106.7 | [37] |
H2O | 18.0152 | [39] | 2.641 | [37] | 809.1 | [37] |
Atmosphere | Temperature (K) | Mass Flux of Cr loss Due to Volatilisation (×10−10 g cm−2 s−1) | |
---|---|---|---|
Average | Error | ||
Ar–20%O2–40%H2O | 873 | 1.0 | 0.1 |
973 | 2.7 | 0.3 | |
1073 | 6.0 | 0.8 | |
O2–40%H2O | 873 | 2.2 | 0.8 |
973 | 4.2 | 1.2 | |
1073 | 13 | 4.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thublaor, T.; Tengprasert, W.; Suparapinyopapkul, G.; Nilsonthi, T.; Chandra-ambhorn, W.; Chandra-ambhorn, S. Novel Method for Determining Standard Enthalpy and Entropy of Volatilisation of Chromia Exposed to Humidified Oxygen at 298 K Based on Transport Theory of Multicomponent Gas Mixtures. Entropy 2025, 27, 101. https://doi.org/10.3390/e27020101
Thublaor T, Tengprasert W, Suparapinyopapkul G, Nilsonthi T, Chandra-ambhorn W, Chandra-ambhorn S. Novel Method for Determining Standard Enthalpy and Entropy of Volatilisation of Chromia Exposed to Humidified Oxygen at 298 K Based on Transport Theory of Multicomponent Gas Mixtures. Entropy. 2025; 27(2):101. https://doi.org/10.3390/e27020101
Chicago/Turabian StyleThublaor, Thammaporn, Watcharapon Tengprasert, Grid Suparapinyopapkul, Thanasak Nilsonthi, Walairat Chandra-ambhorn, and Somrerk Chandra-ambhorn. 2025. "Novel Method for Determining Standard Enthalpy and Entropy of Volatilisation of Chromia Exposed to Humidified Oxygen at 298 K Based on Transport Theory of Multicomponent Gas Mixtures" Entropy 27, no. 2: 101. https://doi.org/10.3390/e27020101
APA StyleThublaor, T., Tengprasert, W., Suparapinyopapkul, G., Nilsonthi, T., Chandra-ambhorn, W., & Chandra-ambhorn, S. (2025). Novel Method for Determining Standard Enthalpy and Entropy of Volatilisation of Chromia Exposed to Humidified Oxygen at 298 K Based on Transport Theory of Multicomponent Gas Mixtures. Entropy, 27(2), 101. https://doi.org/10.3390/e27020101