Entropy Production in a System of Janus Particles
Abstract
:1. Introduction
2. Active Particles Dynamics
3. Single-Particle Entropy Production
4. Active Particles Entropy Production During Self-Organization
5. Discussions and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Fu, Y.; Yu, H.; Zhang, X.; Malgaretti, P.; Kishore, V.; Wang, W. Microscopic swarms: From active matter physics to biomedical and environmental applications. Micromachines 2022, 13, 295. [Google Scholar] [CrossRef] [PubMed]
- Gompper, G.; Winkler, R.G.; Speck, T.; Solon, A.; Nardini, C.; Peruani, F.; Löwen, H.; Golestanian, R.; Kaupp, U.B.; Alvarez, L.; et al. The 2020 motile active matter roadmap. J. Phys. Condens. Matter 2020, 32, 193001. [Google Scholar] [CrossRef] [PubMed]
- Kurzthaler, C.; Gentile, L.; Stone, H.A. Out-of-Equilibrium Soft Matter; The Royal Society of Chemistry: London, UK, 2023. [Google Scholar] [CrossRef]
- Liebchen, B.; Mukhopadhyay, A.K. Interactions in active colloids. J. Phys. Condens. Matter 2021, 34, 083002. [Google Scholar] [CrossRef] [PubMed]
- Mendelson, N.H.; Lega, J. A Complex Pattern of Traveling Stripes Is Produced by Swimming Cells of Bacillus subtilis. J. Bacteriol. 1998, 180, 3285–3294. [Google Scholar] [CrossRef] [PubMed]
- Bowick, M.J.; Fakhri, N.; Marchetti, M.C.; Ramaswamy, S. Symmetry, thermodynamics, and topology in active matte. Phys. Rev. X 2022, 12, 010501. [Google Scholar]
- Pohl, O.; Stark, H. Dynamic clustering and chemotactic collapse of self-phoretic active particles. Phys. Rev. Lett. 2014, 112, 238303. [Google Scholar] [CrossRef]
- Toschi, F.; Sega, M. (Eds.) Flowing Matter; Soft and Biological Matter; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Fadda, F.; Matoz-Fernandez, D.A.; van Roij, R.; Jabbari-Farouji, S. The interplay between chemo-phoretic interactions and crowding in active colloids. Soft Matter 2023, 19, 2297–2310. [Google Scholar] [CrossRef]
- Gaspard, P.; Kapral, R. Communication: Mechanochemical fluctuation theorem and thermodynamics of self-phoretic motors. J. Chem. Phys. 2017, 147, 211101. [Google Scholar] [CrossRef] [PubMed]
- Gaspard, P.; Kapral, R. Nonequilibrium thermodynamics and boundary conditions for reaction and transport in heterogeneous media. J. Chem. Phys. 2018, 148, 194114. [Google Scholar] [CrossRef]
- Prigogine, I. Non-Equilibrium Statistical Mechanics; Courier Dover Publications: New York, NY, USA, 2017. [Google Scholar]
- Derjaguin, B.; Sidorenkov, G.; Zubashchenkov, E.; Kiseleva, E. Kinetic phenomena in boundary films of liquids. Kolloidn. Zh. 1947, 9, 335–347. [Google Scholar]
- Anderson, J.L. Colloid Transport by Interfacial Forces. Annu. Rev. Fluid Mech. 1989, 21, 61–99. [Google Scholar] [CrossRef]
- Bedeaux, D.; Albano, A.; Mazur, P. Boundary conditions and non-equilibrium thermodynamics. Phys. Stat. Mech. Its Appl. 1976, 82, 438–462. [Google Scholar] [CrossRef]
- Bafaluy, J.; Pagonabarraga, I.; Rubí, J.; Bedeaux, D. Thermocapillary motion of a drop in a fluid under external gradients. Faxén theorem. Phys. Stat. Mech. Its Appl. 1995, 213, 277–292. [Google Scholar] [CrossRef]
- Takatori, S.C.; Brady, J.F. Towards a thermodynamics of active matter. Phys. Rev. E 2015, 91, 032117. [Google Scholar] [CrossRef]
- Chaudhuri, D. Active Brownian particles: Entropy production and fluctuation response. Phys. Rev. E 2014, 90, 022131. [Google Scholar] [CrossRef] [PubMed]
- Burkholder, E.W.; Brady, J.F. Fluctuation-dissipation in active matter. J. Chem. Phys. 2019, 150, 184901. [Google Scholar] [CrossRef]
- Speck, T.; Jack, R.L. Ideal bulk pressure of active Brownian particles. Phys. Rev. E 2016, 93, 062605. [Google Scholar] [CrossRef] [PubMed]
- Seifert, U. From Stochastic Thermodynamics to Thermodynamic Inference. Annu. Rev. Condens. Matter Phys. 2019, 10, 171–192. [Google Scholar] [CrossRef]
- Fodor, E.; Jack, R.L.; Cates, M.E. Irreversibility and Biased Ensembles in Active Matter: Insights from Stochastic Thermodynamics. Annu. Rev. Condens. Matter Phys. 2022, 13, 215–238. [Google Scholar] [CrossRef]
- Cates, M.E.; Fodor, E.; Markovich, T.; Nardini, C.; Tjhung, E. Stochastic Hydrodynamics of Complex Fluids: Discretisation and Entropy Production. Entropy 2022, 24, 254. [Google Scholar] [CrossRef]
- Arango-Restrepo, A.; Rubi, J.M.; Barragán, D. Understanding Gelation as a Nonequilibrium Self-Assembly Process. J. Phys. Chem. 2018, 122, 4937–4945. [Google Scholar] [CrossRef]
- Reguera, D.; Rubi, J.M.; Vilar, J.M.G. The mesoscopic dynamics of thermodynamic systems. J. Phys. Chem. B 2005, 109, 21502–21515. [Google Scholar] [CrossRef] [PubMed]
- De Groot, S.R.; Mazur, P. Non-Equilibrium Thermodynamics; Courier Corporation: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Rubi, J.; Bedeaux, D.; Kjelstrup, S.; Pagonabarraga, I. Chemical cycle kinetics: Removing the limitation of linearity of a non-equilibrium thermodynamic description. Int. J. Thermophys. 2013, 34, 1214–1228. [Google Scholar] [CrossRef]
- Olarte-Plata, J.D.; Bresme, F. Orientation of Janus particles under thermal fields: The role of internal mass anisotropy. J. Chem. Phys. 2020, 152, 204902. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.J.; Schofield, J.; Kapral, R. Chemotactic and hydrodynamic effects on collective dynamics of self-diffusiophoretic Janus motors. New J. Phys. 2017, 19, 125003. [Google Scholar] [CrossRef]
- Gilbert, T.; Dorfman, J.R. Entropy production: From open volume-preserving to dissipative systems. J. Stat. Phys. 1999, 96, 225–269. [Google Scholar] [CrossRef]
- Vicsek, T.; Czirók, A.; Ben-Jacob, E.; Cohen, I.; Shochet, O. Novel Type of Phase Transition in a System of Self-Driven Particles. Phys. Rev. Lett. 1995, 75, 1226–1229. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Golestanian, R.; Ramaswamy, S. Clusters, asters, and collective oscillations in chemotactic colloids. Phy. Rev. E 2014, 89, 062316. [Google Scholar] [CrossRef] [PubMed]
- Nasouri, B.; Golestanian, R. Exact Phoretic Interaction of Two Chemically Active Particles. Phys. Rev. Lett. 2020, 124, 168003. [Google Scholar] [CrossRef] [PubMed]
- Scagliarini, A.; Pagonabarraga, I. Unravelling the role of phoretic and hydrodynamic interactions in active colloidal suspensions. Soft Matter 2020, 16, 8893–8903. [Google Scholar] [CrossRef] [PubMed]
- Torrenegra-Rico, J.D.; Arango-Restrepo, A.; Rubi, J.M. Self-organization of Janus particles: Impact of hydrodynamic interactions in substrate consumption for structure formation. J. Chem. Phys. 2024, 161, 224101. [Google Scholar] [CrossRef]
- Zhao, H.; Košmrlj, A.; Datta, S.S. Chemotactic Motility-Induced Phase Separation. Phys. Rev. Lett. 2023, 131, 118301. [Google Scholar] [CrossRef] [PubMed]
- Ezhilan, B.; Pahlavan, A.A.; Saintillan, D. Chaotic dynamics and oxygen transport in thin films of aerotactic bacteria. Phys. Fluids 2012, 24, 091701. [Google Scholar] [CrossRef]
- Peng, Z.; Kapral, R. Self-organization of active colloids mediated by chemical interactions. Soft Matter 2024, 20, 1100–1113. [Google Scholar] [CrossRef] [PubMed]
- Torrenegra-Rico, J.D.; Arango-Restrepo, A.; Rubí, J.M. Nonequilibrium thermodynamics of Janus particle self-assembly. J. Chem. Phys. 2022, 157, 104103. [Google Scholar] [CrossRef]
- Bresme, F.; Olarte-Plata, J.D.; Chapman, A.; Albella, P.; Green, C. Thermophoresis and thermal orientation of Janus nanoparticles in thermal fields. Eur. Phys. J. 2022, 45, 59. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Chapman, A.; Olarte-Plata, J.D.; Bresme, F. Controlling local thermal gradients at molecular scales with Janus nanoheaters. Nanoscale 2023, 15, 10264–10276. [Google Scholar] [CrossRef]
- Olarte-Plata, J.D.; Bresme, F. Impact of the Interfacial Kapitza Resistance on Colloidal Thermophoresis. ACS Omega 2024, 9, 43779–43784. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Su, J.; Jiang, H.; Hou, Z. Effective entropy production and thermodynamic uncertainty relation of active Brownian particles. Phys. Fluids 2022, 34, 053310. [Google Scholar] [CrossRef]
- Ro, S.; Guo, B.; Shih, A.; Phan, T.V.; Austin, R.H.; Levine, D.; Chaikin, P.M.; Martiniani, S. Model-Free Measurement of Local Entropy Production and Extractable Work in Active Matter. Phys. Rev. Lett. 2022, 129, 220601. [Google Scholar] [CrossRef]
- Dolai, P.; Maes, C.; Netočný, K. Calorimetry for active systems. SciPost Phys. 2023, 14, 126. [Google Scholar] [CrossRef]
- Paoluzzi, M. Measuring Entropy in Active-Matter Systems. Physics 2022, 15, 179. [Google Scholar] [CrossRef]
- Onsager, L. Reciprocal Relations in Irreversible Processes. II. Phys. Rev. 1931, 38, 2265–2279. [Google Scholar] [CrossRef]
- Dufty, J.W.; Rub, J.M. Generalized Onsager symmetry. Phys. Rev. A 1987, 36, 222–225. [Google Scholar] [CrossRef]
- Paxton, W.F.; Kistler, K.C.; Olmeda, C.C.; Sen, A.; St. Angelo, S.K.; Cao, Y.; Mallouk, T.E.; Lammert, P.E.; Crespi, V.H. Catalytic Nanomotors:Autonomous Movement of Striped Nanorods. J. Am. Chem. Soc. 2004, 126, 13424–13431. [Google Scholar] [CrossRef]
- Gaspard, P.; Kapral, R. The stochastic motion of self-thermophoretic Janus particles. J. Stat. Mech. Theory Exp. 2019, 2019, 074001. [Google Scholar] [CrossRef]
- Gaspard, P.; Kapral, R. Active Matter, Microreversibility, and Thermodynamics. Research 2020, 2020, 9739231. [Google Scholar] [CrossRef] [PubMed]
- Michelin, S.; Lauga, E. Phoretic self-propulsion at finite Péclet numbers. J. Fluid Mech. 2014, 747, 572–604. [Google Scholar] [CrossRef]
- Popescu, M.N.; Uspal, W.E.; Dietrich, S. Self-diffusiophoresis of chemically active colloids. Eur. Phys. J. Spec. Top. 2016, 225, 2189–2206. [Google Scholar] [CrossRef]
- Moran, J.L.; Posner, J.D. Phoretic Self-Propulsion. Annu. Rev. Fluid Mech. 2017, 49, 511–540. [Google Scholar] [CrossRef]
- De Corato, M.; Pagonabarraga, I. Onsager reciprocal relations and chemo-mechanical coupling for chemically active colloids. J. Chem. Phys. 2022, 157, 084901. [Google Scholar] [CrossRef] [PubMed]
- Arango-Restrepo, A.; Rubi, J.M. Interplay of phoresis and self-phoresis in active particles: Transport properties, phoretic, and self-phoretic coefficients. J. Chem. Phys. 2024, 161, 054906. [Google Scholar] [CrossRef] [PubMed]
- Pagonabarraga, I.; Pérez-Madrid, A.; Rubí, J. Fluctuating hydrodynamics approach to chemical reactions. Phys. Stat. Mech. Its Appl. 1997, 237, 205–219. [Google Scholar] [CrossRef]
- Martyushev, L.; Seleznev, V. Maximum entropy production principle in physics, chemistry and biology. Phys. Rep. 2006, 426, 1–45. [Google Scholar] [CrossRef]
- Arango-Restrepo, A.; Barragán, D.; Rubi, J.M. Self-assembling outside equilibrium: Emergence of structures mediated by dissipation. Phys. Chem. Chem. Phys. 2019, 21, 17475–17493. [Google Scholar] [CrossRef]
- Popescu, M.N.; Uspal, W.E.; Bechinger, C.; Fischer, P. Chemotaxis of Active Janus Nanoparticles. Nano Lett. 2018, 18, 5345–5349. [Google Scholar] [CrossRef] [PubMed]
- Klamser, J.U.; Kapfer, S.C.; Krauth, W. Thermodynamic phases in two-dimensional active matter. Nat. Commun. 2018, 9, 1–8. [Google Scholar]
- Cates, M.E.; Tailleur, J. Motility-induced phase separation. Annu. Rev. Condens. Matter Phys. 2015, 6, 219–244. [Google Scholar] [CrossRef]
- Stenhammar, J.; Marenduzzo, D.; Allen, R.J.; Cates, M.E. Phase behaviour of active Brownian particles: The role of dimensionality. Soft Matter 2014, 10, 1489–1499. [Google Scholar] [CrossRef] [PubMed]
- Takatori, S.C.; Brady, J.F. Forces, stresses and the (thermo?) dynamics of active matter. Curr. Opin. Colloid Interface Sci. 2016, 21, 24–33. [Google Scholar] [CrossRef]
- Caprini, L.; Marini Bettolo Marconi, U.; Puglisi, A. Activity induced delocalization and freezing in self-propelled systems. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef]
- Zhang, Y.; Barato, A.C. Critical behavior of entropy production and learning rate: Ising model with an oscillating field. J. Stat. Mech. Theory Exp. 2016, 2016, 113207. [Google Scholar] [CrossRef]
- Seara, D.S.; Yadav, V.; Linsmeier, I.; Tabatabai, A.P.; Oakes, P.W.; Tabei, S.M.A.; Banerjee, S.; Murrell, M.P. Entropy production rate is maximized in non-contractile actomyosin. Nat. Commun. 2018, 9, 4948. [Google Scholar] [CrossRef]
- Noa, C.E.F.; Harunari, P.E.; de Oliveira, M.J.; Fiore, C.E. Entropy production as a tool for characterizing nonequilibrium phase transitions. Phys. Rev. E 2019, 100, 012104. [Google Scholar] [CrossRef] [PubMed]
- Shklyaev, O.E.; Shum, H.; Balazs, A.C. Using Chemical Pumps and Motors To Design Flows for Directed Particle Assembly. Accounts Chem. Res. 2018, 51, 2672–2680. [Google Scholar] [CrossRef] [PubMed]
- O’Byrne, J.; Solon, A.; Tailleur, J.; Zhao, Y. An Introduction to Motility-induced Phase Separation. In Out-of-Equilibrium Soft Matter: Active fluids; The Royal Society of Chemistry: London, UK, 2023. [Google Scholar]
- Mandal, D.; Klymko, K.; DeWeese, M.R. Entropy Production and Fluctuation Theorems for Active Matter. Phys. Rev. Lett. 2017, 119, 258001. [Google Scholar] [CrossRef]
- Arango-Restrepo, A.; Barragán, D.; Rubi, J.M. A Criterion for the Formation of Nonequilibrium Self-Assembled Structures. J. Phys. Chem. 2021, 125, 1838–1845. [Google Scholar] [CrossRef]
- Weeks, J.D.; Chandler, D.; Andersen, H.C. Role of repulsive forces in determining the equilibrium structure of simple liquids. J. Chem. Phy. 1971, 54, 5237–5247. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arango-Restrepo, A.; Torrenegra-Rico, J.D.; Rubi, J.M. Entropy Production in a System of Janus Particles. Entropy 2025, 27, 112. https://doi.org/10.3390/e27020112
Arango-Restrepo A, Torrenegra-Rico JD, Rubi JM. Entropy Production in a System of Janus Particles. Entropy. 2025; 27(2):112. https://doi.org/10.3390/e27020112
Chicago/Turabian StyleArango-Restrepo, Andrés, Juan David Torrenegra-Rico, and J. Miguel Rubi. 2025. "Entropy Production in a System of Janus Particles" Entropy 27, no. 2: 112. https://doi.org/10.3390/e27020112
APA StyleArango-Restrepo, A., Torrenegra-Rico, J. D., & Rubi, J. M. (2025). Entropy Production in a System of Janus Particles. Entropy, 27(2), 112. https://doi.org/10.3390/e27020112