Entropy and Complexity Tools Across Scales in Neuroscience: A Review
Abstract
:1. Introduction
2. Types of Signals in Neuroscience
2.1. Discrete Signals
2.2. Continuous Signals
2.3. Imaging-Based Signals
2.4. Computational Models and Simulations of the Brain
3. Types of Entropy and Complexity Indexes in Neuroscience
3.1. Entropy
3.2. Complexity in Brain Dynamics
3.3. Steps to Compute PCI
- Perturbation: Apply external stimulation to a brain region.
- Recording: Measure the resulting brain activity.
- Spatiotemporal Analysis: Analyze the recorded data to extract binary spatiotemporal patterns.
- Compression: Apply a compression algorithm (such as Lempel–Ziv complexity) to the spatiotemporal patterns.
- Normalization: Normalize the compressibility score to obtain the PCI.
4. Challenges and Limitations
4.1. Data Quality and Arbitrary Preprocessing
4.2. Choosing Appropriate Parameters
4.3. Interpretation of Results
4.4. Experimental and Computational Implementation
4.5. Non-Stationarity of Brain Signals
4.6. Comparability Across Studies and Modalities
4.7. Pathological vs. Healthy Brain States
4.8. Statistical Challenges and False Positives
5. Discussion
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LFP | Local field potential |
ECoG | Electrocorticography |
EEG | Electroencephalography |
fMRI | Functional magnetic resonance imaging |
fUS | Functional ultrasound |
PCI | Perturbational Complexity Index |
MSE | Multiscale Entropy |
LZC | Lempel–Ziv Complexity |
KL | Kullback–Leibler |
MEP | Maximum Entropy Principle |
MEA | Multi-Electrode Array |
SE | Sample Entropy |
TE | Transfer Entropy |
DTC | Dual Total Correlation |
TC | Total Correlation |
UWS | Unresponsive Wakefulness Syndrome |
MCS | Minimally Conscious State |
Symbol List | |
entropy of the random variable X; | |
probability of outcome ; | |
Transfer Entropy from X to Y; | |
entropy production; | |
neural complexity; | |
Lempel–Ziv complexity of the sequence S; | |
O-Information. |
References
- Bialek, W. Biophysics: Searching for Principles; Princeton University Press: Princeton, NJ, USA, 2012. [Google Scholar]
- Fagerholm, E.D.; Dezhina, Z.; Moran, R.J.; Turkheimer, F.E.; Leech, R. A primer on entropy in neuroscience. Neurosci. Biobehav. Rev. 2023, 146, 105070. [Google Scholar] [CrossRef] [PubMed]
- Keshmiri, S. Entropy and the brain: An overview. Entropy 2020, 22, 917. [Google Scholar] [CrossRef] [PubMed]
- Müller, I. A History of Thermodynamics: The Doctrine of Energy and Entropy; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Strong, S.P.; Koberle, R.; Van Steveninck, R.R.D.R.; Bialek, W. Entropy and information in neural spike trains. Phys. Rev. Lett. 1998, 80, 197. [Google Scholar] [CrossRef]
- Nemenman, I.; Bialek, W.; de Ruyter van Steveninck, R. Entropy and information in neural spike trains: Progress on the sampling problem. Phys. Rev. E—Stat. Nonlinear Soft Matter Phys. 2004, 69, 056111. [Google Scholar] [CrossRef]
- Inouye, T.; Shinosaki, K.; Sakamoto, H.; Toi, S.; Ukai, S.; Iyama, A.; Katsuda, Y.; Hirano, M. Quantification of EEG irregularity by use of the entropy of the power spectrum. Electroencephalogr. Clin. Neurophysiol. 1991, 79, 204–210. [Google Scholar] [CrossRef]
- Abásolo, D.; Hornero, R.; Espino, P.; Alvarez, D.; Poza, J. Entropy analysis of the EEG background activity in Alzheimer’s disease patients. Physiol. Meas. 2006, 27, 241. [Google Scholar] [CrossRef]
- Demertzi, A.; Tagliazucchi, E.; Dehaene, S.; Deco, G.; Barttfeld, P.; Raimondo, F.; Martial, C.; Fernández-Espejo, D.; Rohaut, B.; Voss, H.; et al. Human consciousness is supported by dynamic complex patterns of brain signal coordination. Sci. Adv. 2019, 5, eaat7603. [Google Scholar] [CrossRef]
- Barttfeld, P.; Uhrig, L.; Sitt, J.D.; Sigman, M.; Jarraya, B.; Dehaene, S. Signature of consciousness in the dynamics of resting-state brain activity. Proc. Natl. Acad. Sci. USA 2015, 112, 887–892. [Google Scholar] [CrossRef]
- Mitchell, M. Complexity: A Guided Tour; Oxford University Press: New York, NY, USA, 2009. [Google Scholar]
- Ziv, J.; Lempel, A. Compression of individual sequences via variable-rate coding. IEEE Trans. Inf. Theory 1978, 24, 530–536. [Google Scholar] [CrossRef]
- Tononi, G.; Sporns, O.; Edelman, G.M. A measure for brain complexity: Relating functional segregation and integration in the nervous system. Proc. Natl. Acad. Sci. USA 1994, 91, 5033–5037. [Google Scholar] [CrossRef] [PubMed]
- Casali, A.G.; Gosseries, O.; Rosanova, M.; Boly, M.; Sarasso, S.; Casali, K.R.; Casarotto, S.; Bruno, M.A.; Laureys, S.; Tononi, G.; et al. A theoretically based index of consciousness independent of sensory processing and behavior. Sci. Transl. Med. 2013, 5, 198ra105. [Google Scholar] [CrossRef]
- Mediano, P.A.; Rosas, F.E.; Luppi, A.I.; Jensen, H.J.; Seth, A.K.; Barrett, A.B.; Carhart-Harris, R.L.; Bor, D. Greater than the parts: A review of the information decomposition approach to causal emergence. Philos. Trans. R. Soc. A 2022, 380, 20210246. [Google Scholar] [CrossRef]
- Battiston, F.; Cencetti, G.; Iacopini, I.; Latora, V.; Lucas, M.; Patania, A.; Young, J.G.; Petri, G. Networks beyond pairwise interactions: Structure and dynamics. Phys. Rep. 2020, 874, 1–92. [Google Scholar]
- Brette, R.; Destexhe, A. Handbook of Neural Activity Measurement; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Einevoll, G.T.; Kayser, C.; Logothetis, N.K.; Panzeri, S. Modelling and analysis of local field potentials for studying the function of cortical circuits. Nat. Rev. Neurosci. 2013, 14, 770–785. [Google Scholar] [CrossRef]
- Heeger, D.J.; Ress, D. What does fMRI tell us about neuronal activity? Nat. Rev. Neurosci. 2002, 3, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Gross, J. Magnetoencephalography in cognitive neuroscience: A primer. Neuron 2019, 104, 189–204. [Google Scholar] [CrossRef]
- Uddin, L.Q. Bring the noise: Reconceptualizing spontaneous neural activity. Trends Cogn. Sci. 2020, 24, 734–746. [Google Scholar] [CrossRef]
- Halnes, G.; Ness, T.V.; Næss, S.; Hagen, E.; Pettersen, K.H.; Einevoll, G.T. Electric Brain Signals: Foundations and Applications of Biophysical Modeling; Cambridge University Press: Cambridge, UK, 2024. [Google Scholar]
- Rieke, F.; Warland, D.; Van Steveninck, R.d.R.; Bialek, W. Spikes: Exploring the Neural Code; MIT Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Gabbiani, F.; Koch, C. Principles of spike train analysis. Methods Neuronal Model. 1998, 12, 313–360. [Google Scholar]
- Grün, S.; Rotter, S. Analysis of Parallel Spike Trains; Springer: Berlin/Heidelberg, Germany, 2010; Volume 7. [Google Scholar]
- Cessac, B. A discrete time neural network model with spiking neurons: Rigorous results on the spontaneous dynamics. J. Math. Biol. 2008, 56, 311–345. [Google Scholar] [CrossRef]
- Castro, P.; Luppi, A.; Tagliazucchi, E.; Perl, Y.S.; Naci, L.; Owen, A.M.; Sitt, J.D.; Destexhe, A.; Cofré, R. Dynamical structure-function correlations provide robust and generalizable signatures of consciousness in humans. Commun. Biol. 2024, 7, 1224. [Google Scholar] [CrossRef] [PubMed]
- French, A.S.; Pfeiffer, K. Measuring entropy in continuous and digitally filtered neural signals. J. Neurosci. Methods 2011, 196, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, K.; French, A.S. GABAergic excitation of spider mechanoreceptors increases information capacity by increasing entropy rather than decreasing jitter. J. Neurosci. 2009, 29, 10989–10994. [Google Scholar] [CrossRef] [PubMed]
- Borst, A.; Theunissen, F.E. Information theory and neural coding. Nat. Neurosci. 1999, 2, 947–957. [Google Scholar] [CrossRef]
- Kajikawa, Y.; Schroeder, C.E. How local is the local field potential? Neuron 2011, 72, 847–858. [Google Scholar] [CrossRef]
- Mazzoni, A.; Lindén, H.; Cuntz, H.; Lansner, A.; Panzeri, S.; Einevoll, G.T. Computing the local field potential (LFP) from integrate-and-fire network models. PLoS Comput. Biol. 2015, 11, e1004584. [Google Scholar] [CrossRef]
- Telenczuk, B.; Telenczuk, M.; Destexhe, A. A kernel-based method to calculate local field potentials from networks of spiking neurons. J. Neurosci. Methods 2020, 344, 108871. [Google Scholar] [CrossRef]
- Vakani, R.; Nair, D.R. Electrocorticography and functional mapping. Handb. Clin. Neurol. 2019, 160, 313–327. [Google Scholar]
- Teplan, M. Fundamentals of EEG measurement. Meas. Sci. Rev. 2002, 2, 1–11. [Google Scholar]
- Cohen, M.X. Where does EEG come from and what does it mean? Trends Neurosci. 2017, 40, 208–218. [Google Scholar] [CrossRef]
- Wheless, J.W.; Castillo, E.; Maggio, V.; Kim, H.L.; Breier, J.I.; Simos, P.G.; Papanicolaou, A.C. Magnetoencephalography (MEG) and magnetic source imaging (MSI). Neurologist 2004, 10, 138–153. [Google Scholar] [CrossRef] [PubMed]
- Supek, S.; Aine, C.J. Magnetoencephalography; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Grienberger, C.; Konnerth, A. Imaging calcium in neurons. Neuron 2012, 73, 862–885. [Google Scholar] [CrossRef] [PubMed]
- Mukamel, E.A.; Nimmerjahn, A.; Schnitzer, M.J. Automated analysis of cellular signals from large-scale calcium imaging data. Neuron 2009, 63, 747–760. [Google Scholar] [CrossRef]
- Chemla, S.; Chavane, F. Voltage-sensitive dye imaging: Technique review and models. J. Physiol. 2010, 104, 40–50. [Google Scholar] [CrossRef]
- Deffieux, T.; Demené, C.; Tanter, M. Functional Ultrasound Imaging: A New Imaging Modality for Neuroscience. Neuroscience 2021, 474, 110–121. [Google Scholar] [CrossRef]
- Logothetis, N.K.; Wandell, B.A. Interpreting the BOLD signal. Annu. Rev. Physiol. 2004, 66, 735–769. [Google Scholar] [CrossRef]
- Arthurs, O.J.; Boniface, S. How well do we understand the neural origins of the fMRI BOLD signal? Trends Neurosci. 2002, 25, 27–31. [Google Scholar] [CrossRef]
- Le Bihan, D.; Mangin, J.F.; Poupon, C.; Clark, C.A.; Pappata, S.; Molko, N.; Chabriat, H. Diffusion tensor imaging: Concepts and applications. J. Magn. Reson. Imaging Off. J. Int. Soc. Magn. Reson. Med. 2001, 13, 534–546. [Google Scholar] [CrossRef]
- Assaf, Y.; Pasternak, O. Diffusion tensor imaging (DTI)-based white matter mapping in brain research: A review. J. Mol. Neurosci. 2008, 34, 51–61. [Google Scholar] [CrossRef]
- Bailey, D.L.; Maisey, M.N.; Townsend, D.W.; Valk, P.E. Positron Emission Tomography; Springer: Berlin/Heidelberg, Germany, 2005; Volume 2. [Google Scholar]
- Gerstner, W.; Kistler, W.M.; Naud, R.; Paninski, L. Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Luppi, A.I.; Cabral, J.; Cofre, R.; Destexhe, A.; Deco, G.; Kringelbach, M.L. Dynamical models to evaluate structure–function relationships in network neuroscience. Nat. Rev. Neurosci. 2022, 23, 767–768. [Google Scholar] [CrossRef]
- Di Volo, M.; Romagnoni, A.; Capone, C.; Destexhe, A. Biologically realistic mean-field models of conductance-based networks of spiking neurons with adaptation. Neural Comput. 2019, 31, 653–680. [Google Scholar] [CrossRef] [PubMed]
- Deco, G.; Ponce-Alvarez, A.; Hagmann, P.; Romani, G.L.; Mantini, D.; Corbetta, M. How local excitation–inhibition ratio impacts the whole brain dynamics. J. Neurosci. 2014, 34, 7886–7898. [Google Scholar] [CrossRef]
- Capone, C.; Di Volo, M.; Romagnoni, A.; Mattia, M.; Destexhe, A. State-dependent mean-field formalism to model different activity states in conductance-based networks of spiking neurons. Phys. Rev. E 2019, 100, 062413. [Google Scholar] [CrossRef]
- Herzog, R.; Mediano, P.A.; Rosas, F.E.; Luppi, A.I.; Sanz-Perl, Y.; Tagliazucchi, E.; Kringelbach, M.L.; Cofré, R.; Deco, G. Neural mass modeling for the masses: Democratizing access to whole-brain biophysical modeling with FastDMF. Netw. Neurosci. 2024, 8, 1590–1612. [Google Scholar] [CrossRef]
- Herzog, R.; Mediano, P.A.; Rosas, F.E.; Lodder, P.; Carhart-Harris, R.; Perl, Y.S.; Tagliazucchi, E.; Cofre, R. A whole-brain model of the neural entropy increase elicited by psychedelic drugs. Sci. Rep. 2023, 13, 6244. [Google Scholar] [CrossRef]
- Cofré, R.; Herzog, R.; Mediano, P.A.; Piccinini, J.; Rosas, F.E.; Sanz Perl, Y.; Tagliazucchi, E. Whole-brain models to explore altered states of consciousness from the bottom up. Brain Sci. 2020, 10, 626. [Google Scholar] [CrossRef]
- Goldman, J.S.; Kusch, L.; Aquilue, D.; Yalçınkaya, B.H.; Depannemaecker, D.; Ancourt, K.; Nghiem, T.A.E.; Jirsa, V.; Destexhe, A. A comprehensive neural simulation of slow-wave sleep and highly responsive wakefulness dynamics. Front. Comput. Neurosci. 2023, 16, 1058957. [Google Scholar] [CrossRef]
- Destexhe, A.; Sacha, M.; Tesler, F.; Cofre, R. A Computational Approach to Evaluate How Molecular Mechanisms Impact Large-Scale Brain Activity. 2024. Available online: https://www.researchsquare.com/article/rs-4610184/v1 (accessed on 27 November 2024).
- Cover, T.M.; Thomas, J.A. Information theory and statistics. Elem. Inf. Theory 1991, 1, 279–335. [Google Scholar]
- Jaynes, E.T. Information theory and statistical mechanics. Phys. Rev. 1957, 106, 620. [Google Scholar] [CrossRef]
- Lesne, A. Shannon entropy: A rigorous notion at the crossroads between probability, information theory, dynamical systems and statistical physics. Math. Struct. Comput. Sci. 2014, 24, e240311. [Google Scholar] [CrossRef]
- Schneidman, E.; Berry, M.J.; Segev, R.; Bialek, W. Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 2006, 440, 1007–1012. [Google Scholar] [CrossRef]
- Ganmor, E.; Segev, R.; Schneidman, E. Sparse low-order interaction network underlies a highly correlated and learnable neural population code. Proc. Natl. Acad. Sci. USA 2011, 108, 9679–9684. [Google Scholar] [CrossRef]
- Marre, O.; El Boustani, S.; Frégnac, Y.; Destexhe, A. Prediction of spatiotemporal patterns of neural activity from pairwise correlations. Phys. Rev. Lett. 2009, 102, 138101. [Google Scholar] [CrossRef] [PubMed]
- Vasquez, J.C.; Marre, O.; Palacios, A.G.; Berry, M.J., II; Cessac, B. Gibbs distribution analysis of temporal correlations structure in retina ganglion cells. J. Physiol. 2012, 106, 120–127. [Google Scholar]
- Watanabe, T.; Hirose, S.; Wada, H.; Imai, Y.; Machida, T.; Shirouzu, I.; Konishi, S.; Miyashita, Y.; Masuda, N. A pairwise maximum entropy model accurately describes resting-state human brain networks. Nat. Commun. 2013, 4, 1370. [Google Scholar] [CrossRef]
- Gu, S.; Cieslak, M.; Baird, B.; Muldoon, S.F.; Grafton, S.T.; Pasqualetti, F.; Bassett, D.S. The energy landscape of neurophysiological activity implicit in brain network structure. Sci. Rep. 2018, 8, 2507. [Google Scholar] [CrossRef] [PubMed]
- Ponce-Alvarez, A.; Uhrig, L.; Deco, N.; Signorelli, C.M.; Kringelbach, M.L.; Jarraya, B.; Deco, G. Macroscopic quantities of collective brain activity during wakefulness and anesthesia. Cereb. Cortex 2022, 32, 298–311. [Google Scholar] [CrossRef]
- Delgado-Bonal, A.; Marshak, A. Approximate entropy and sample entropy: A comprehensive tutorial. Entropy 2019, 21, 541. [Google Scholar] [CrossRef]
- Wei, Q.; Liu, Q.; Fan, S.Z.; Lu, C.W.; Lin, T.Y.; Abbod, M.F.; Shieh, J.S. Analysis of EEG via multivariate empirical mode decomposition for depth of anesthesia based on sample entropy. Entropy 2013, 15, 3458–3470. [Google Scholar] [CrossRef]
- Jiang, G.J.; Fan, S.Z.; Abbod, M.F.; Huang, H.H.; Lan, J.Y.; Tsai, F.F.; Chang, H.C.; Yang, Y.W.; Chuang, F.L.; Chiu, Y.F.; et al. Sample entropy analysis of EEG signals via artificial neural networks to model patients’ consciousness level based on anesthesiologists experience. BioMed Res. Int. 2015, 2015, 343478. [Google Scholar] [CrossRef]
- Chen, Y.; Pham, T.D. Sample entropy and regularity dimension in complexity analysis of cortical surface structure in early Alzheimer’s disease and aging. J. Neurosci. Methods 2013, 215, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Varley, T.F.; Luppi, A.I.; Pappas, I.; Naci, L.; Adapa, R.; Owen, A.M.; Menon, D.K.; Stamatakis, E.A. Consciousness & brain functional complexity in propofol anaesthesia. Sci. Rep. 2020, 10, 1018. [Google Scholar]
- Courtiol, J.; Perdikis, D.; Petkoski, S.; Müller, V.; Huys, R.; Sleimen-Malkoun, R.; Jirsa, V.K. The multiscale entropy: Guidelines for use and interpretation in brain signal analysis. J. Neurosci. Methods 2016, 273, 175–190. [Google Scholar] [CrossRef]
- Araya-Arriagada, J.; Garay, S.; Rojas, C.; Duran-Aniotz, C.; Palacios, A.G.; Chacón, M.; Medina, L.E. Multiscale entropy analysis of retinal signals reveals reduced complexity in a mouse model of Alzheimer’s disease. Sci. Rep. 2022, 12, 8900. [Google Scholar] [CrossRef]
- Chenxi, L.; Chen, Y.; Li, Y.; Wang, J.; Liu, T. Complexity analysis of brain activity in attention-deficit/hyperactivity disorder: A multiscale entropy analysis. Brain Res. Bull. 2016, 124, 12–20. [Google Scholar] [CrossRef]
- Miskovic, V.; MacDonald, K.J.; Rhodes, L.J.; Cote, K.A. Changes in EEG multiscale entropy and power-law frequency scaling during the human sleep cycle. Hum. Brain Mapp. 2019, 40, 538–551. [Google Scholar] [CrossRef]
- Gaspard, P.; Wang, X.J. Noise, chaos, and (ε, τ)-entropy per unit time. Phys. Rep. 1993, 235, 291–343. [Google Scholar] [CrossRef]
- Cencini, M.; Falcioni, M.; Olbrich, E.; Kantz, H.; Vulpiani, A. Chaos or noise: Difficulties of a distinction. Phys. Rev. E 2000, 62, 427. [Google Scholar] [CrossRef]
- El Boustani, S.; Destexhe, A. Brain dynamics at multiple scales: Can one reconcile the apparent low-dimensional chaos of macroscopic variables with the seemingly stochastic behavior of single neurons? Int. J. Bifurc. Chaos 2010, 20, 1687–1702. [Google Scholar] [CrossRef]
- Bossomaier, T.; Barnett, L.; Harré, M.; Lizier, J.T.; Bossomaier, T.; Barnett, L.; Harré, M.; Lizier, J.T. Transfer Entropy; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Wibral, M.; Vicente, R.; Lindner, M. Transfer entropy in neuroscience. In Directed Information Measures in Neuroscience; Springer: Berlin/Heidelberg, Germany, 2014; pp. 3–36. [Google Scholar]
- Vicente, R.; Wibral, M.; Lindner, M.; Pipa, G. Transfer entropy—A model-free measure of effective connectivity for the neurosciences. J. Comput. Neurosci. 2011, 30, 45–67. [Google Scholar] [CrossRef]
- Novelli, L.; Wollstadt, P.; Mediano, P.; Wibral, M.; Lizier, J.T. Large-scale directed network inference with multivariate transfer entropy and hierarchical statistical testing. Netw. Neurosci. 2019, 3, 827–847. [Google Scholar] [CrossRef]
- Maes, C.; Redig, F.; Moffaert, A.V. On the definition of entropy production, via examples. J. Math. Phys. 2000, 41, 1528–1554. [Google Scholar] [CrossRef]
- Jiang, D.Q.; Jiang, D. Mathematical Theory of Nonequilibrium Steady States: On the Frontier of Probability and Dynamical Systems; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Maes, C.; Netočnỳ, K. Time-reversal and entropy. J. Stat. Phys. 2003, 110, 269–310. [Google Scholar] [CrossRef]
- Cofré, R.; Maldonado, C. Information entropy production of maximum entropy Markov chains from spike trains. Entropy 2018, 20, 34. [Google Scholar] [CrossRef]
- Cofré, R.; Videla, L.; Rosas, F. An introduction to the non-equilibrium steady states of maximum entropy spike trains. Entropy 2019, 21, 884. [Google Scholar] [CrossRef]
- Lynn, C.W.; Cornblath, E.J.; Papadopoulos, L.; Bertolero, M.A.; Bassett, D.S. Broken detailed balance and entropy production in the human brain. Proc. Natl. Acad. Sci. USA 2021, 118, e2109889118. [Google Scholar] [CrossRef]
- Gilson, M.; Tagliazucchi, E.; Cofré, R. Entropy production of multivariate Ornstein-Uhlenbeck processes correlates with consciousness levels in the human brain. Phys. Rev. E 2023, 107, 024121. [Google Scholar] [CrossRef]
- de la Fuente, L.A.; Zamberlan, F.; Bocaccio, H.; Kringelbach, M.; Deco, G.; Perl, Y.S.; Pallavicini, C.; Tagliazucchi, E. Temporal irreversibility of neural dynamics as a signature of consciousness. Cereb. Cortex 2023, 33, 1856–1865. [Google Scholar] [CrossRef]
- Lempel, A.; Ziv, J. On the complexity of finite sequences. IEEE Trans. Inf. Theory 1976, 22, 75–81. [Google Scholar] [CrossRef]
- Aboy, M.; Hornero, R.; Abásolo, D.; Álvarez, D. Interpretation of the Lempel-Ziv complexity measure in the context of biomedical signal analysis. IEEE Trans. Biomed. Eng. 2006, 53, 2282–2288. [Google Scholar] [CrossRef]
- Amigó, J.M.; Szczepański, J.; Wajnryb, E.; Sanchez-Vives, M.V. Estimating the entropy rate of spike trains via Lempel-Ziv complexity. Neural Comput. 2004, 16, 717–736. [Google Scholar] [CrossRef] [PubMed]
- Hudetz, A.G.; Liu, X.; Pillay, S.; Boly, M.; Tononi, G. Propofol anesthesia reduces Lempel-Ziv complexity of spontaneous brain activity in rats. Neurosci. Lett. 2016, 628, 132–135. [Google Scholar] [CrossRef] [PubMed]
- Höhn, C.; Hahn, M.A.; Lendner, J.D.; Hoedlmoser, K. Spectral Slope and Lempel–Ziv Complexity as Robust Markers of Brain States during Sleep and Wakefulness. Eneuro 2024, 11, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Mediano, P.A.; Rosas, F.E.; Timmermann, C.; Roseman, L.; Nutt, D.J.; Feilding, A.; Kaelen, M.; Kringelbach, M.L.; Barrett, A.B.; Seth, A.K.; et al. Effects of external stimulation on psychedelic state neurodynamics. ACS Chem. Neurosci. 2024, 15, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Barbero-Castillo, A.; Mateos-Aparicio, P.; Dalla Porta, L.; Camassa, A.; Perez-Mendez, L.; Sanchez-Vives, M.V. Impact of GABAA and GABAB inhibition on cortical dynamics and perturbational complexity during synchronous and desynchronized states. J. Neurosci. 2021, 41, 5029–5044. [Google Scholar] [CrossRef]
- Comolatti, R.; Pigorini, A.; Casarotto, S.; Fecchio, M.; Faria, G.; Sarasso, S.; Rosanova, M.; Gosseries, O.; Boly, M.; Bodart, O.; et al. A fast and general method to empirically estimate the complexity of brain responses to transcranial and intracranial stimulations. Brain Stimul. 2019, 12, 1280–1289. [Google Scholar] [CrossRef]
- Barnett, L.; Buckley, C.L.; Bullock, S. Neural complexity and structural connectivity. Phys. Rev. E—Stat. Nonlinear Soft Matter Phys. 2009, 79, 051914. [Google Scholar] [CrossRef]
- Frohlich, J.; Chiang, J.N.; Mediano, P.A.; Nespeca, M.; Saravanapandian, V.; Toker, D.; Dell’Italia, J.; Hipp, J.F.; Jeste, S.S.; Chu, C.J.; et al. Neural complexity is a common denominator of human consciousness across diverse regimes of cortical dynamics. Commun. Biol. 2022, 5, 1374. [Google Scholar] [CrossRef]
- Zhang, Y.; Lucas, M.; Battiston, F. Higher-order interactions shape collective dynamics differently in hypergraphs and simplicial complexes. Nat. Commun. 2023, 14, 1605. [Google Scholar] [CrossRef]
- Watanabe, S. Information theoretical analysis of multivariate correlation. IBM J. Res. Dev. 1960, 4, 66–82. [Google Scholar] [CrossRef]
- Te Sun, H. Nonnegative entropy measures of multivariate symmetric correlations. Inf. Control 1978, 36, 133–156. [Google Scholar]
- Rosas, F.E.; Mediano, P.A.; Gastpar, M.; Jensen, H.J. Quantifying high-order interdependencies via multivariate extensions of the mutual information. Phys. Rev. E 2019, 100, 032305. [Google Scholar] [CrossRef] [PubMed]
- Gatica, M.; Cofré, R.; Mediano, P.A.; Rosas, F.E.; Orio, P.; Diez, I.; Swinnen, S.P.; Cortes, J.M. High-order interdependencies in the aging brain. Brain Connect. 2021, 11, 734–744. [Google Scholar] [CrossRef] [PubMed]
- Herzog, R.; Rosas, F.E.; Whelan, R.; Fittipaldi, S.; Santamaria-Garcia, H.; Cruzat, J.; Birba, A.; Moguilner, S.; Tagliazucchi, E.; Prado, P.; et al. Genuine high-order interactions in brain networks and neurodegeneration. Neurobiol. Dis. 2022, 175, 105918. [Google Scholar] [CrossRef]
- Varley, T.F.; Sporns, O.; Schaffelhofer, S.; Scherberger, H.; Dann, B. Information-processing dynamics in neural networks of macaque cerebral cortex reflect cognitive state and behavior. Proc. Natl. Acad. Sci. USA 2023, 120, e2207677120. [Google Scholar] [CrossRef]
- Luppi, A.I.; Mediano, P.A.; Rosas, F.E.; Allanson, J.; Pickard, J.; Carhart-Harris, R.L.; Williams, G.B.; Craig, M.M.; Finoia, P.; Owen, A.M.; et al. A synergistic workspace for human consciousness revealed by integrated information decomposition. eLife 2024, 12, RP88173. [Google Scholar] [CrossRef]
- Valencia, M.; Artieda, J.; Alegre, M.; Maza, D. Influence of filters in the detrended fluctuation analysis of digital electroencephalographic data. J. Neurosci. Methods 2008, 170, 310–316. [Google Scholar] [CrossRef]
- Todorova, S.; Sadtler, P.; Batista, A.; Chase, S.; Ventura, V. To sort or not to sort: The impact of spike-sorting on neural decoding performance. J. Neural Eng. 2014, 11, 056005. [Google Scholar] [CrossRef]
- Gavrilescu, M.; Stuart, G.W.; Rossell, S.; Henshall, K.; McKay, C.; Sergejew, A.A.; Copolov, D.; Egan, G.F. Functional connectivity estimation in fMRI data: Influence of preprocessing and time course selection. Hum. Brain Mapp. 2008, 29, 1040–1052. [Google Scholar] [CrossRef]
- Lindquist, M.A.; Geuter, S.; Wager, T.D.; Caffo, B.S. Modular preprocessing pipelines can reintroduce artifacts into fMRI data. Hum. Brain Mapp. 2019, 40, 2358–2376. [Google Scholar] [CrossRef]
- Humeau-Heurtier, A. The multiscale entropy algorithm and its variants: A review. Entropy 2015, 17, 3110–3123. [Google Scholar] [CrossRef]
- Beggs, J.M.; Timme, N. Being critical of criticality in the brain. Front. Physiol. 2012, 3, 163. [Google Scholar] [CrossRef] [PubMed]
- Kannathal, N.; Choo, M.L.; Acharya, U.R.; Sadasivan, P. Entropies for detection of epilepsy in EEG. Comput. Methods Programs Biomed. 2005, 80, 187–194. [Google Scholar] [CrossRef]
- Camargo, A.; Del Mauro, G.; Wang, Z. Task-induced changes in brain entropy. J. Neurosci. Res. 2024, 102, e25310. [Google Scholar] [CrossRef]
- Carhart-Harris, R.L.; Leech, R.; Hellyer, P.J.; Shanahan, M.; Feilding, A.; Tagliazucchi, E.; Chialvo, D.R.; Nutt, D. The entropic brain: A theory of conscious states informed by neuroimaging research with psychedelic drugs. Front. Hum. Neurosci. 2014, 8, 20. [Google Scholar] [CrossRef]
- Carhart-Harris, R.L. The entropic brain-revisited. Neuropharmacology 2018, 142, 167–178. [Google Scholar] [CrossRef]
- Tyrcha, J.; Roudi, Y.; Marsili, M.; Hertz, J. The effect of nonstationarity on models inferred from neural data. J. Stat. Mech. Theory Exp. 2013, 2013, P03005. [Google Scholar] [CrossRef]
- Grün, S.; Diesmann, M.; Aertsen, A. Unitary events in multiple single-neuron spiking activity: II. Nonstationary data. Neural Comput. 2002, 14, 81–119. [Google Scholar] [CrossRef]
- Drachman, D.A. Aging of the brain, entropy, and Alzheimer disease. Neurology 2006, 67, 1340–1352. [Google Scholar] [CrossRef]
- Hong, S.L.; Barton, S.J.; Rebec, G.V. Altered neural and behavioral dynamics in Huntington’s disease: An entropy conservation approach. PLoS ONE 2012, 7, e30879. [Google Scholar] [CrossRef]
- Button, K.S.; Ioannidis, J.P.; Mokrysz, C.; Nosek, B.A.; Flint, J.; Robinson, E.S.; Munafò, M.R. Power failure: Why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 2013, 14, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Nieuwenhuis, S.; Forstmann, B.U.; Wagenmakers, E.J. Erroneous analyses of interactions in neuroscience: A problem of significance. Nat. Neurosci. 2011, 14, 1105–1107. [Google Scholar] [CrossRef] [PubMed]
- Colquhoun, D. An investigation of the false discovery rate and the misinterpretation of p-values. R. Soc. Open Sci. 2014, 1, 140216. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Guardado, A.; Yang, Y.; Bandodkar, A.J.; Rogers, J.A. Recent advances in neurotechnologies with broad potential for neuroscience research. Nat. Neurosci. 2020, 23, 1522–1536. [Google Scholar] [CrossRef]
- Churchland, P.S.; Sejnowski, T.J. The Computational Brain; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Guan, S.; Wan, D.; Zhao, R.; Canario, E.; Meng, C.; Biswal, B.B. The complexity of spontaneous brain activity changes in schizophrenia, bipolar disorder, and ADHD was examined using different variations of entropy. Hum. Brain Mapp. 2023, 44, 94–118. [Google Scholar] [CrossRef]
- Zhang, R.; Murray, S.B.; Duval, C.J.; Wang, D.J.; Jann, K. Functional connectivity and complexity analyses of resting-state fMRI in pre-adolescents demonstrating the behavioral symptoms of ADHD. Psychiatry Res. 2024, 334, 115794. [Google Scholar] [CrossRef]
- Gu, Y.; Miao, S.; Han, J.; Zeng, K.; Ouyang, G.; Yang, J.; Li, X. Complexity analysis of fNIRS signals in ADHD children during working memory task. Sci. Rep. 2017, 7, 829. [Google Scholar] [CrossRef]
- Muttoni, S.; Ardissino, M.; John, C. Classical psychedelics for the treatment of depression and anxiety: A systematic review. J. Affect. Disord. 2019, 258, 11–24. [Google Scholar] [CrossRef]
- Wang, J.Z.; Wyble, B. Hopfield and Hinton’s neural network revolution and the future of AI. Patterns 2024, 5, 101094. [Google Scholar] [CrossRef]
- Ball, P. Chemistry Nobel Awarded for an AI System That Predicts Protein Structures. Physics 2024, 17, 149. [Google Scholar] [CrossRef]
- Deco, G.; Kringelbach, M.L. Great expectations: Using whole-brain computational connectomics for understanding neuropsychiatric disorders. Neuron 2014, 84, 892–905. [Google Scholar] [CrossRef] [PubMed]
- Amunts, K.; Axer, M.; Banerjee, S.; Bitsch, L.; Bjaalie, J.G.; Brauner, P.; Brovelli, A.; Calarco, N.; Carrere, M.; Caspers, S.; et al. The coming decade of digital brain research: A vision for neuroscience at the intersection of technology and computing. Imaging Neurosci. 2024, 2, 1–35. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cofré, R.; Destexhe, A. Entropy and Complexity Tools Across Scales in Neuroscience: A Review. Entropy 2025, 27, 115. https://doi.org/10.3390/e27020115
Cofré R, Destexhe A. Entropy and Complexity Tools Across Scales in Neuroscience: A Review. Entropy. 2025; 27(2):115. https://doi.org/10.3390/e27020115
Chicago/Turabian StyleCofré, Rodrigo, and Alain Destexhe. 2025. "Entropy and Complexity Tools Across Scales in Neuroscience: A Review" Entropy 27, no. 2: 115. https://doi.org/10.3390/e27020115
APA StyleCofré, R., & Destexhe, A. (2025). Entropy and Complexity Tools Across Scales in Neuroscience: A Review. Entropy, 27(2), 115. https://doi.org/10.3390/e27020115