As One and Many: Relating Individual and Emergent Group-Level Generative Models in Active Inference
Abstract
:1. Introduction
1.1. Active Inference and the Free Energy Principle
1.2. Multi-Agent and Collective Active Inference
2. Materials and Methods
2.1. Active Inference for Multi-Armed Bandit Tasks
2.2. Computational Cognitive Modelling
2.3. Cognitive Modelling for Collective Agents
2.4. Simulation Experiments
3. Results
3.1. Parameter Recovery
3.2. Simulation Experiments
4. Discussion
Applications and Extensions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FEP | Free Energy Principle |
POMDP | Partially Observed Markov Decision Process |
MAB | Multi-Armed Bandit task |
Appendix A
References
- Parr, T.; Pezzulo, G.; Friston, K.J. Active Inference: The Free Energy Principle in Mind, Brain, and Behavior; The MIT Press: Cambridge, MA, USA, 2022. [Google Scholar] [CrossRef]
- Friston, K.; FitzGerald, T.; Rigoli, F.; Schwartenbeck, P.; O’Doherty, J.; Pezzulo, G. Active inference and learning. Neurosci. Biobehav. Rev. 2016, 68, 862–879. [Google Scholar] [CrossRef] [PubMed]
- Friston, K.; FitzGerald, T.; Rigoli, F.; Schwartenbeck, P.; Pezzulo, G. Active inference: A process theory. Neural Comput. 2017, 29, 1–49. [Google Scholar] [CrossRef] [PubMed]
- Friston, K.J.; Stephan, K.E. Free-energy and the brain. Synthese 2007, 159, 417–458. [Google Scholar] [CrossRef] [PubMed]
- Friston, K. The free-energy principle: A unified brain theory? Nat. Rev. Neurosci. 2010, 11, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Friston, K. The free-energy principle: A rough guide to the brain? Trends Cogn. Sci. 2009, 13, 293–301. [Google Scholar] [CrossRef]
- Friston, K. A free energy principle for a particular physics. arXiv 2019, arXiv:1906.10184. [Google Scholar] [CrossRef]
- Friston, K.; Da Costa, L.; Sajid, N.; Heins, C.; Ueltzhöffer, K.; Pavliotis, G.A.; Parr, T. The free energy principle made simpler but not too simple. Phys. Rep. 2023, 1024, 1–29. [Google Scholar] [CrossRef]
- Ramstead, M.J.D.; Badcock, P.B.; Friston, K.J. Answering Schrödinger’s question: A free-energy formulation. Phys. Life Rev. 2018, 24, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Kirchhoff, M.; Parr, T.; Palacios, E.; Friston, K.; Kiverstein, J. The markov blankets of life: Autonomy, active inference and the free energy principle. J. R. Soc. Interface 2018, 15, 20170792. [Google Scholar] [CrossRef] [PubMed]
- Hesp, C.; Ramstead, M.; Constant, A.; Badcock, P.; Kirchhoff, M.; Friston, K. A Multi-Scale View of the Emergent Complexity of Life: A Free-Energy Proposal; Springer: Cham, Switzerland, 2019; pp. 195–227. [Google Scholar] [CrossRef]
- Heins, C.; Klein, B.; Demekas, D.; Aguilera, M.; Buckley, C.L. Spin Glass Systems as Collective Active Inference. In Active Inference: Third International Workshop, IWAI 2022, Grenoble, France, 19 September 2022; Buckley, C.L., Cialfi, D., Lanillos, P., Ramstead, M., Sajid, N., Shimazaki, H., Verbelen, T., Eds.; Revised Selected Papers; Springer: Cham, Switzerland, 2023; pp. 75–98. [Google Scholar] [CrossRef]
- Biehl, M.; Pollock, F.A.; Kanai, R. A Technical Critique of Some Parts of the Free Energy Principle. Entropy 2021, 23, 293. [Google Scholar] [CrossRef]
- Friston, K.; Da Costa, L.; Sakthivadivel, D.A.R.; Heins, C.; Pavliotis, G.A.; Ramstead, M.; Parr, T. Path integrals, particular kinds, and strange things. Phys. Life Rev. 2023, 47, 35–62. [Google Scholar] [CrossRef] [PubMed]
- Friston, K.; Kiebel, S. Predictive coding under the free-energy principle. Philos. Trans. R. Soc. Biol. Sci. 2009, 364, 1211–1221. [Google Scholar] [CrossRef]
- Friston, K. Computational psychiatry: From synapses to sentience. Mol. Psychiatry 2023, 28, 256–268. [Google Scholar] [CrossRef]
- Schwartenbeck, P.; Friston, K. Computational Phenotyping in Psychiatry: A Worked Example. eNeuro 2016, 3, ENEURO.0049–16.2016. [Google Scholar] [CrossRef] [PubMed]
- Lanillos, P.; Meo, C.; Pezzato, C.; Meera, A.A.; Baioumy, M.; Ohata, W.; Tschantz, A.; Millidge, B.; Wisse, M.; Buckley, C.L.; et al. Active Inference in Robotics and Artificial Agents: Survey and Challenges. arXiv 2021, arXiv:2112.01871. [Google Scholar] [CrossRef]
- Hohwy, J. The Predictive Mind; Oxford University Press: Oxford, UK, 2013. [Google Scholar] [CrossRef]
- Hohwy, J. Conscious Self-Evidencing. Rev. Philos. Psychol. 2022, 13, 809–828. [Google Scholar] [CrossRef]
- Friston, K.J.; Daunizeau, J.; Kiebel, S.J. Reinforcement Learning or Active Inference? PLoS ONE 2009, 4, e6421. [Google Scholar] [CrossRef] [PubMed]
- Palacios, E.R.; Razi, A.; Parr, T.; Kirchhoff, M.; Friston, K. On Markov blankets and hierarchical self-organisation. J. Theor. Biol. 2020, 486, 110089. [Google Scholar] [CrossRef] [PubMed]
- Friston, K. Life as we know it. J. R. Soc. Interface 2013, 10, 20130475. [Google Scholar] [CrossRef]
- Friston, K.; Frith, C. A Duet for one. Conscious. Cogn. 2015, 36, 390–405. [Google Scholar] [CrossRef]
- Veissière, S.P.L.; Constant, A.; Ramstead, M.J.D.; Friston, K.J.; Kirmayer, L.J. Thinking through other minds: A variational approach to cognition and culture. Behav. Brain Sci. 2020, 43, e90. [Google Scholar] [CrossRef] [PubMed]
- Veissière, S.P.L.; Constant, A.; Ramstead, M.J.D.; Friston, K.J.; Kirmayer, L.J. TTOM in action: Refining the variational approach to cognition and culture. Behav. Brain Sci. 2020, 43, e120. [Google Scholar] [CrossRef] [PubMed]
- Ramstead, M.J.D.; Veissière, S.P.L.; Kirmayer, L.J. Cultural Affordances: Scaffolding Local Worlds Through Shared Intentionality and Regimes of Attention. Front. Psychol. 2016, 7, 1090. [Google Scholar] [CrossRef] [PubMed]
- Constant, A.; Ramstead, M.J.D.; Veissière, S.P.L.; Friston, K. Regimes of Expectations: An Active Inference Model of Social Conformity and Human Decision Making. Front. Psychol. 2019, 10, 679. [Google Scholar] [CrossRef] [PubMed]
- Isomura, T.; Parr, T.; Friston, K. Bayesian Filtering with Multiple Internal Models: Toward a Theory of Social Intelligence. Neural Comput. 2019, 31, 2390–2431. [Google Scholar] [CrossRef] [PubMed]
- Pöppel, J.; Kahl, S.; Kopp, S. Resonating Minds—Emergent Collaboration Through Hierarchical Active Inference. Cogn. Comput. 2022, 14, 581–601. [Google Scholar] [CrossRef]
- Yoshida, W.; Dolan, R.J.; Friston, K.J. Game Theory of Mind. PLoS Comput. Biol. 2008, 4, e1000254. [Google Scholar] [CrossRef]
- Devaine, M.; Hollard, G.; Daunizeau, J. Theory of Mind: Did Evolution Fool Us? PLoS ONE 2014, 9, e87619. [Google Scholar] [CrossRef] [PubMed]
- Vasil, J.; Badcock, P.B.; Constant, A.; Friston, K.; Ramstead, M.J.D. A World Unto Itself: Human Communication as Active Inference. Front. Psychol. 2020, 11, 417. [Google Scholar] [CrossRef] [PubMed]
- Albarracin, M.; Pitliya, R.J.; St. Clere Smithe, T.; Friedman, D.A.; Friston, K.; Ramstead, M.J.D. Shared Protentions in Multi-Agent Active Inference. Entropy 2024, 26, 303. [Google Scholar] [CrossRef] [PubMed]
- Friston, K.J.; Frith, C.D. Active inference, communication and hermeneutics. Cortex 2015, 68, 129–143. [Google Scholar] [CrossRef] [PubMed]
- Medrano, J.; Sajid, N. A Broken Duet: Multistable Dynamics in Dyadic Interactions. Entropy 2024, 26, 731. [Google Scholar] [CrossRef] [PubMed]
- Friston, K.J.; Parr, T.; Yufik, Y.; Sajid, N.; Price, C.J.; Holmes, E. Generative models, linguistic communication and active inference. Neurosci. Biobehav. Rev. 2020, 118, 42–64. [Google Scholar] [CrossRef] [PubMed]
- Friston, K.J.; Parr, T.; Heins, C.; Constant, A.; Friedman, D.; Isomura, T.; Fields, C.; Verbelen, T.; Ramstead, M.; Clippinger, J.; et al. Federated inference and belief sharing. Neurosci. Biobehav. Rev. 2024, 156, 105500. [Google Scholar] [CrossRef] [PubMed]
- Maisto, D.; Donnarumma, F.; Pezzulo, G. Interactive inference: A multi-agent model of cooperative joint actions. IEEE Trans. Syst. Man Cybern. Syst. 2024, 54, 704–715. [Google Scholar] [CrossRef]
- Levchuk, G.; Pattipati, K.; Serfaty, D.; Fouse, A.; McCormack, R. Chapter 4—Active Inference in Multiagent Systems: Context-Driven Collaboration and Decentralized Purpose-Driven Team Adaptation. In Artificial Intelligence for the Internet of Everything; Lawless, W., Mittu, R., Sofge, D., Moskowitz, I.S., Russell, S., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 67–85. [Google Scholar] [CrossRef]
- Demekas, D.; Heins, C.; Klein, B. An Analytical Model of Active Inference in the Iterated Prisoner’s Dilemma. In Active Inference: 4th International Workshop, IWAI 2023, Ghent, Belgium, 13–15 September 2023; Buckley, C.L., Cialfi, D., Lanillos, P., Ramstead, M., Sajid, N., Shimazaki, H., Verbelen, T., Wisse, M., Eds.; Revised Selected Papers; Springer: Cham, Switzerland, 2024; pp. 145–172. [Google Scholar] [CrossRef]
- Isomura, T.; Friston, K. In vitro neural networks minimise variational free energy. Sci. Rep. 2018, 8, 16926. [Google Scholar] [CrossRef]
- Palacios, E.R.; Isomura, T.; Parr, T.; Friston, K. The emergence of synchrony in networks of mutually inferring neurons. Sci. Rep. 2019, 9, 6412. [Google Scholar] [CrossRef] [PubMed]
- Isomura, T.; Shimazaki, H.; Friston, K.J. Canonical neural networks perform active inference. Commun. Biol. 2022, 5, 55. [Google Scholar] [CrossRef]
- Kastel, N.; Hesp, C. Ideas Worth Spreading: A Free Energy Proposal for Cumulative Cultural Dynamics. In Machine Learning and Principles and Practice of Knowledge Discovery in Databases: International Workshops of ECML PKDD 2021, Virtual Event, 13–17 September 2021; Kamp, M., Koprinska, I., Bibal, A., Bouadi, T., Frénay, B., Galárraga, L., Oramas, J., Adilova, L., Krishnamurthy, Y., Kang, B., et al., Eds.; Proceedings, Part I; Springer: Cham, Switzerland, 2021; pp. 784–798. [Google Scholar] [CrossRef]
- Kastel, N.; Hesp, C.; Ridderinkhof, K.R.; Friston, K.J. Small steps for mankind: Modeling the emergence of cumulative culture from joint active inference communication. Front. Neurorobotics 2023, 16, 944986. [Google Scholar] [CrossRef] [PubMed]
- Albarracin, M.; Demekas, D.; Ramstead, M.J.D.; Heins, C. Epistemic Communities under Active Inference. Entropy 2022, 24, 476. [Google Scholar] [CrossRef] [PubMed]
- Friston, K.J.; Ramstead, M.J.; Kiefer, A.B.; Tschantz, A.; Buckley, C.L.; Albarracin, M.; Pitliya, R.J.; Heins, C.; Klein, B.; Millidge, B.; et al. Designing ecosystems of intelligence from first principles. Collect. Intell. 2024, 3, 26339137231222481. [Google Scholar] [CrossRef]
- Friston, K.; Levin, M.; Sengupta, B.; Pezzulo, G. Knowing one’s place: A free-energy approach to pattern regulation. J. R. Soc. Interface 2015, 12, 20141383. [Google Scholar] [CrossRef] [PubMed]
- Kuchling, F.; Friston, K.; Georgiev, G.; Levin, M. Morphogenesis as Bayesian inference: A variational approach to pattern formation and control in complex biological systems. Phys. Life Rev. 2019, 33, 88–108. [Google Scholar] [CrossRef]
- Friston, K.J.; Fagerholm, E.D.; Zarghami, T.S.; Parr, T.; Hipólito, I.; Magrou, L.; Razi, A. Parcels and particles: Markov blankets in the brain. Netw. Neurosci. 2021, 5, 211–251. [Google Scholar] [CrossRef] [PubMed]
- Pio-Lopez, L.; Kuchling, F.; Tung, A.; Pezzulo, G.; Levin, M. Active inference, morphogenesis, and computational psychiatry. Front. Comput. Neurosci. 2022, 16, 988977. [Google Scholar] [CrossRef]
- Friedman, D.A.; Tschantz, A.; Ramstead, M.J.D.; Friston, K.; Constant, A. Active Inferants: An Active Inference Framework for Ant Colony Behavior. Front. Behav. Neurosci. 2021, 15, 647732. [Google Scholar] [CrossRef]
- Heins, C.; Millidge, B.; Da Costa, L.; Mann, R.P.; Friston, K.J.; Couzin, I.D. Collective behavior from surprise minimization. Proc. Natl. Acad. Sci. USA 2024, 121, e2320239121. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, R.; Gupta, P.; Taylor, J. An Active Inference Model of Collective Intelligence. Entropy 2021, 23, 830. [Google Scholar] [CrossRef]
- Bezanson, J.; Karpinski, S.; Shah, V.B.; Edelman, A. Julia: A Fast Dynamic Language for Technical Computing. arXiv 2012, arXiv:1209.5145. [Google Scholar] [CrossRef]
- Nehrer, S.W. Introducing ActiveInference.jl: A Julia Library for Simulation and Parameter Estimation with Active Inference Models. Entropy 2025, 27, 62. [Google Scholar] [CrossRef]
- Ge, H.; Xu, K.; Ghahramani, Z. Turing: A Language for Flexible Probabilistic Inference. In Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics. PMLR, Lanzarote, Spain, 9–11 April 2018; pp. 1682–1690. [Google Scholar]
- Slivkins, A. Introduction to Multi-Armed Bandits. Found. Trends® Mach. Learn. 2019, 12, 1–286. [Google Scholar] [CrossRef]
- Marković, D.; Stojić, H.; Schwöbel, S.; Kiebel, S.J. An empirical evaluation of active inference in multi-armed bandits. Neural Netw. 2021, 144, 229–246. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.; Friston, K.J.; Whyte, C.J. A step-by-step tutorial on active inference and its application to empirical data. J. Math. Psychol. 2022, 107, 102632. [Google Scholar] [CrossRef]
- Friston, K.J.; Rosch, R.; Parr, T.; Price, C.; Bowman, H. Deep temporal models and active inference. Neurosci. Biobehav. Rev. 2017, 77, 388–402. [Google Scholar] [CrossRef]
- Friston, K.; Heins, C.; Verbelen, T.; Costa, L.D.; Salvatori, T.; Markovic, D.; Tschantz, A.; Koudahl, M.; Buckley, C.; Parr, T. From pixels to planning: Scale-free active inference. arXiv 2024, arXiv:2407.20292. [Google Scholar] [CrossRef]
- Lee, M.D.; Wagenmakers, E.J. Bayesian Cognitive Modeling: A Practical Course, 1st ed.; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar] [CrossRef]
- Wilson, R.C.; Collins, A.G. Ten simple rules for the computational modeling of behavioral data. eLife 2019, 8, e49547. [Google Scholar] [CrossRef] [PubMed]
- Hess, A.J.; Iglesias, S.; Köchli, L.; Marino, S.; Müller-Schrader, M.; Rigoux, L.; Mathys, C.; Harrison, O.K.; Heinzle, J.; Frässle, S.; et al. Bayesian Workflow for Generative Modeling in Computational Psychiatry. bioRxiv 2024. [Google Scholar] [CrossRef]
- Coombs, C.; Dawes, R.; Tversky, A. Mathematical Psychology: An Elementary Introduction; Prentice-Hall: Oxford, UK, 1970. [Google Scholar]
- Palmeri, T.J.; Love, B.C.; Turner, B.M. Model-based cognitive neuroscience. J. Math. Psychol. 2017, 76, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Blei, D.M.; Kucukelbir, A.; McAuliffe, J.D. Variational Inference: A Review for Statisticians. J. Am. Stat. Assoc. 2017, 112, 859–877. [Google Scholar] [CrossRef]
- Ma, S.K. Introduction to the Renormalization Group. Rev. Mod. Phys. 1973, 45, 589–614. [Google Scholar] [CrossRef]
- Rosas, F.E.; Mediano, P.A.M.; Jensen, H.J.; Seth, A.K.; Barrett, A.B.; Carhart-Harris, R.L.; Bor, D. Reconciling emergences: An information-theoretic approach to identify causal emergence in multivariate data. PLoS Comput. Biol. 2020, 16, e1008289. [Google Scholar] [CrossRef]
- Albantakis, L.; Barbosa, L.; Findlay, G.; Grasso, M.; Haun, A.M.; Marshall, W.; Mayner, W.G.P.; Zaeemzadeh, A.; Boly, M.; Juel, B.E.; et al. Integrated information theory (IIT) 4.0: Formulating the properties of phenomenal existence in physical terms. PLoS Comput. Biol. 2023, 19, e1011465. [Google Scholar] [CrossRef]
- Kagan, B.J.; Kitchen, A.C.; Tran, N.T.; Habibollahi, F.; Khajehnejad, M.; Parker, B.J.; Bhat, A.; Rollo, B.; Razi, A.; Friston, K.J. In vitro neurons learn and exhibit sentience when embodied in a simulated game-world. Neuron 2022, 110, 3952–3969.e8. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thestrup Waade, P.; Lundbak Olesen, C.; Ehrenreich Laursen, J.; Nehrer, S.W.; Heins, C.; Friston, K.; Mathys, C. As One and Many: Relating Individual and Emergent Group-Level Generative Models in Active Inference. Entropy 2025, 27, 143. https://doi.org/10.3390/e27020143
Thestrup Waade P, Lundbak Olesen C, Ehrenreich Laursen J, Nehrer SW, Heins C, Friston K, Mathys C. As One and Many: Relating Individual and Emergent Group-Level Generative Models in Active Inference. Entropy. 2025; 27(2):143. https://doi.org/10.3390/e27020143
Chicago/Turabian StyleThestrup Waade, Peter, Christoffer Lundbak Olesen, Jonathan Ehrenreich Laursen, Samuel William Nehrer, Conor Heins, Karl Friston, and Christoph Mathys. 2025. "As One and Many: Relating Individual and Emergent Group-Level Generative Models in Active Inference" Entropy 27, no. 2: 143. https://doi.org/10.3390/e27020143
APA StyleThestrup Waade, P., Lundbak Olesen, C., Ehrenreich Laursen, J., Nehrer, S. W., Heins, C., Friston, K., & Mathys, C. (2025). As One and Many: Relating Individual and Emergent Group-Level Generative Models in Active Inference. Entropy, 27(2), 143. https://doi.org/10.3390/e27020143