Quantum Dynamics Framework with Quantum Tunneling Effect for Numerical Optimization
Abstract
:1. Introduction
- Establish the connection between a quantum system and optimization algorithms as well as the proposed quantum dynamics framework (QDF) of optimization algorithms, which provide a profound and extensive physical explanation for the iterative evolution process of optimization algorithms.
- The physical explanation is given for the common operations of optimization algorithms, such as random group search, optimal solutions replacing inferior solutions, and multi-scale processes.
- Based on the QDF and quantum tunneling effect, the quantum dynamics framework with a tunneling effect (QDF-TE) is proposed. The experimental results show that this method is accurate and stable, especially for high-dimensional complex optimization problems.
2. Related Work
3. Quantum Dynamics Framework of Optimization Algorithms
3.1. Schrödinger Equation in Quantum Mechanics
3.2. Schrödinger Equation for Optimization Problems
- The solution for the optimization problems is described by a probability distribution similar to the wave function .
- The objective function of the optimization problems is regarded as the constrained potential energy of the quantum system, namely .
3.3. Taylor Approximation of Objective Function
3.3.1. Dynamic Equation of Optimization Algorithms Under Zero-Order Taylor Approximation
3.3.2. Dynamic Equation of Optimization Algorithms Under First-Order Taylor Approximation
3.3.3. Ground-State Wave Function of Optimization Algorithms Under Second-Order Taylor Approximation
3.4. Algorithm of Quantum Dynamics Framework
Algorithm 1: General framework of QDF. |
4. Quantum Dynamics Framework with the Tunneling Effect (QDF-TE)
4.1. Motivation
4.2. Proposal of QDF-TE
4.2.1. Acquisition of Reference Energy
4.2.2. Determination of Subpopulation Size
4.2.3. Monte Carlo Sampling
4.3. Algorithm of QDF-TE
Algorithm 2: General framework of QDF-TE. |
5. Experimental Results and Discussion
5.1. Experiment for Quantum Tunneling Effect
5.2. Comparison with Other Typical Evolutionary Algorithms
5.2.1. Experimental Settings
5.2.2. Comparative Experiments
5.2.3. Convergence Discussion of QDF-TE
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence; MIT Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Colorni, A. Distributed optimization by ant colonies. In Proceedings of the First European Conference on Artificial Life, Paris, France, 11–13 December 1991. [Google Scholar]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar] [CrossRef]
- Kennedy, J. Probability and dynamics in the particle swarm. In Proceedings of the 2004 Congress on Evolutionary Computation, Portland, OR, USA, 19–23 June 2004; Volume 1, pp. 340–347. [Google Scholar] [CrossRef]
- Omran, M.G.; Engelbrecht, A.P.; Salman, A. Bare bones differential evolution. Eur. J. Oper. Res. 2009, 196, 128–139. [Google Scholar] [CrossRef]
- Li, J.Z.; Tan, Y. The bare bones fireworks algorithm: A minimalist global optimizer. Appl. Soft Comput. 2018, 62, 454–462. [Google Scholar] [CrossRef]
- Finnila, A.B.; Gomez, M.A.; Sebenik, C.; Stenson, C.; Doll, J.D. Quantum annealing: A new method for minimizing multidimensional functions. Chem. Phys. Lett. 1994, 219, 343–348. [Google Scholar] [CrossRef]
- Sun, J.; Feng, B.; Xu, W.B. Particle swarm optimization with particles having quantum behavior. In Proceedings of the Evolutionary Computation, 2004. CEC2004, Portland, OR, USA, 19–23 June 2004; Volume 1, pp. 325–331. [Google Scholar] [CrossRef]
- Nelson, E. Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev. 1966, 150, 1079. [Google Scholar] [CrossRef]
- Wang, M.S. Stochastic interpretation of quantum mechanics in complex space. Phys. Rev. Lett. 1997, 79, 3319. [Google Scholar] [CrossRef]
- Kadowaki, T.; Nishimori, H. Quantum annealing in the transverse Ising model. Phys. Rev. E 1998, 58, 5355. [Google Scholar] [CrossRef]
- Brooke, J.; Bitko, D.; Rosenbaum, T.F.; Aeppli, G. Quantum annealing of a disordered magnet. Science 1999, 284, 779–781. [Google Scholar] [CrossRef]
- Cheung, N.J.; Ding, X.M.; Shen, H.B. A nonhomogeneous cuckoo search algorithm based on quantum mechanism for real parameter optimization. IEEE Trans. Cybern. 2016, 47, 391–402. [Google Scholar] [CrossRef] [PubMed]
- Han, K.H.; Kim, J. Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Trans. Evol. Comput. 2002, 6, 580–593. [Google Scholar] [CrossRef]
- Draa, A.; Meshoul, S.; Talbi, H.; Batouche, M. A quantum-inspired differential evolution algorithm for solving the N-queens problem. Neural Netw. 2011, 1, 21–27. [Google Scholar]
- Narayanan, A.; Moore, M. Quantum-inspired genetic algorithms. In Proceedings of the IEEE International Conference on Evolutionary Computation, Nagoya, Japan, 20–22 May 1996; pp. 61–66. [Google Scholar] [CrossRef]
- Han, K.H.; Kim, J.H. Genetic quantum algorithm and its application to combinatorial optimization problem. In Proceedings of the 2000 Congress on Evolutionary Computation, La Jolla, CA, USA, 16–19 July 2000; Volume 2, pp. 1354–1360. [Google Scholar] [CrossRef]
- Wang, L.; Niu, Q.; Fei, M.R. A novel quantum ant colony optimization algorithm. In International Conference on Life System Modeling and Simulation; Springer: Berlin/Heidelberg, Germany, 2007; pp. 277–286. [Google Scholar] [CrossRef]
- Born, M. Statistical interpretation of quantum mechanics. Science 1955, 122, 675–679. [Google Scholar] [CrossRef] [PubMed]
- Wick, G.C. Properties of Bethe-Salpeter wave functions. Phys. Rev. 1954, 96, 1124. [Google Scholar] [CrossRef]
- Risken, H. Fokker-planck equation. In The Fokker-Planck Equation; Springer: Berlin/Heidelberg, Germany, 1996; pp. 63–95. [Google Scholar] [CrossRef]
- Sun, J.; Fang, W.; Wu, X.J.; Palade, V.; Xu, W.B. Quantum-behaved particle swarm optimization: Analysis of individual particle behavior and parameter selection. Evol. Comput. 2012, 20, 349–393. [Google Scholar] [CrossRef] [PubMed]
- Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys. 1953, 21, 1087–1092. [Google Scholar] [CrossRef]
- Santoro, G.E.; Tosatti, E. Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. J. Phys. A Math. Gen. 2006, 39, R393–R431. [Google Scholar] [CrossRef]
- Feynman, R.P.; Hibbs, A.R. Quantum Mechanics and Path Integrals; Sveučilište u Zagrebu: Zagreb, Croatia, 1965. [Google Scholar]
- Wolpert, D. The lack of A priori distinctions between learning algorithms. Neural Comput. 1996, 8, 1341–1390. [Google Scholar] [CrossRef]
- Grabert, H.; Weiss, U. Quantum tunneling rates for asymmetric double-well systems with Ohmic dissipation. Phys. Rev. Lett. 1985, 54, 1605. [Google Scholar] [CrossRef] [PubMed]
- Karaboga, D.; Basturk, B. On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 2008, 8, 687–697. [Google Scholar] [CrossRef]
- Yu, C.; Kelley, L.C.; Tan, Y. Dynamic search fireworks algorithm with covariance mutation for solving the CEC 2015 learning based competition problems. In Proceedings of the 2015 IEEE Congress on Evolutionary Computation (CEC), Sendai, Japan, 25–28 May 2015; pp. 1106–1112. [Google Scholar] [CrossRef]
- Li, J.; Tan, Y. Loser-out tournament-based fireworks algorithm for multimodal function optimization. IEEE Trans. Evol. Comput. 2017, 22, 679–691. [Google Scholar] [CrossRef]
- Coelho, L.D.S.; Ayala, H.V.H.; Freire, R.Z. Population’s variance-based Adaptive Differential Evolution for real parameter optimization. In Proceedings of the Evolutionary Computation, Cancun, Mexico, 20–23 June 2013; pp. 1672–1677. [Google Scholar]
- Zambrano-Bigiarini, M.; Clerc, M.; Rojas, R. Standard particle swarm optimisation 2011 at cec-2013: A baseline for future pso improvements. In Proceedings of the 2013 IEEE Congress on Evolutionary Computation, Cancun, Mexico, 20–23 June 2013; pp. 2337–2344. [Google Scholar] [CrossRef]
- Wu, G.; Mallipeddi, R.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for the CEC 2017 Competition on Constrained Real-Parameter Optimization; Technical Report; National University of Defense Technology: Changsha, China; Kyungpook National University: Daegu, Republic of Korea; Nanyang Technological University: Singapore, 2017. [Google Scholar]
F | ABC | dynFWA | LOTFWA | PVADE | SPSO2011 | QDF-TE | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MeanErr | Win | StdErr | MeanErr | Win | StdErr | MeanErr | Win | StdErr | MeanErr | Win | StdErr | MeanErr | Win | StdErr | MeanErr | StdErr | |
1 | + | + | − | ≈ | + | ||||||||||||
2 | − | − | − | − | − | ||||||||||||
3 | − | − | − | − | − | ||||||||||||
AR.1-3 | 4.67 | 4.67 | 3.33 | 3.33 | 3.33 | 3.33 | 3.33 | 3.67 | 2.33 | 2.00 | 4.00 | 4.00 | |||||
4 | + | + | ≈ | ≈ | ≈ | ||||||||||||
5 | − | + | − | − | − | ||||||||||||
6 | + | + | + | + | + | ||||||||||||
7 | − | + | − | + | − | ||||||||||||
8 | − | + | − | − | − | ||||||||||||
9 | − | + | − | ≈ | − | ||||||||||||
10 | ≈ | + | ≈ | + | + | ||||||||||||
AR.4-10 | 3.29 | 2.57 | 5.71 | 5.29 | 2.57 | 3.29 | 3.57 | 3.00 | 3.43 | 4.57 | 2.43 | 2.29 | |||||
11 | − | − | − | − | − | ||||||||||||
12 | − | − | + | − | ≈ | ||||||||||||
13 | + | ≈ | − | − | + | ||||||||||||
14 | − | − | − | − | − | ||||||||||||
15 | + | ≈ | + | − | + | ||||||||||||
16 | + | + | ≈ | ≈ | + | ||||||||||||
17 | − | + | − | ≈ | − | ||||||||||||
18 | − | − | − | − | − | ||||||||||||
19 | + | + | + | − | + | ||||||||||||
20 | ≈ | + | ≈ | − | ≈ | ||||||||||||
AR.11-20 | 4.20 | 3.70 | 5.00 | 5.20 | 3.60 | 3.50 | 1.20 | 1.70 | 4.20 | 4.50 | 2.80 | 2.40 | |||||
21 | ≈ | + | − | + | + | ||||||||||||
22 | − | + | − | ≈ | + | ||||||||||||
23 | − | + | + | − | + | ||||||||||||
24 | + | + | − | + | + | ||||||||||||
25 | + | + | + | + | + | 2.53 | |||||||||||
26 | + | + | + | + | + | ||||||||||||
27 | + | + | + | + | + | ||||||||||||
28 | − | ≈ | + | − | − | ||||||||||||
29 | + | + | + | − | + | ||||||||||||
30 | + | + | ≈ | − | + | ||||||||||||
AR.21-30 | 2.40 | 2.80 | 4.90 | 5.00 | 3.90 | 3.80 | 2.90 | 3.10 | 4.40 | 4.40 | 2.50 | 1.90 | |||||
AR.1-30 | 3.54 | 3.25 | 4.96 | 5.00 | 3.32 | 3.46 | 2.64 | 2.75 | 3.89 | 4.21 | 2.64 | 2.32 | |||||
sum | 13/3/14 | 21/3/6 | 10/5/15 | 8/6/16 | 16/3/11 |
F | ABC | dynFWA | LOTFWA | PVADE | SPSO2011 | QDF-TE | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MeanErr | Win | StdErr | MeanErr | Win | StdErr | MeanErr | Win | StdErr | MeanErr | Win | StdErr | MeanErr | Win | StdErr | MeanErr | StdErr | |
1 | + | + | − | + | + | ||||||||||||
2 | + | − | + | + | − | ||||||||||||
3 | + | − | + | − | − | ||||||||||||
AR.1-3 | 4.67 | 4.67 | 3.00 | 3.00 | 4.00 | 4.33 | 3.67 | 4.00 | 2.67 | 2.67 | 3.00 | 2.33 | |||||
4 | − | ≈ | ≈ | ≈ | + | ||||||||||||
5 | + | + | + | + | + | ||||||||||||
6 | − | + | − | − | + | ||||||||||||
7 | + | + | + | + | + | ||||||||||||
8 | + | + | + | + | + | ||||||||||||
9 | + | + | + | − | + | ||||||||||||
10 | + | + | ≈ | + | + | ||||||||||||
AR.4-10 | 3.29 | 2.29 | 5.57 | 5.57 | 2.71 | 3.29 | 4.00 | 3.86 | 3.71 | 4.29 | 1.71 | 1.71 | |||||
11 | + | + | + | + | + | ||||||||||||
12 | + | + | + | − | ≈ | ||||||||||||
13 | − | + | + | − | + | ||||||||||||
14 | + | + | + | − | ≈ | ||||||||||||
15 | + | ≈ | + | − | + | ||||||||||||
16 | + | + | + | ≈ | + | ||||||||||||
17 | + | + | ≈ | + | + | ||||||||||||
18 | + | + | + | − | ≈ | ||||||||||||
19 | − | − | ≈ | − | − | ||||||||||||
20 | + | + | + | ≈ | + | ||||||||||||
AR.11-20 | 4.30 | 3.50 | 4.70 | 5.00 | 4.40 | 4.30 | 1.50 | 1.80 | 3.90 | 4.00 | 2.20 | 2.40 | |||||
21 | + | + | − | + | + | ||||||||||||
22 | − | + | − | − | + | ||||||||||||
23 | + | + | + | + | + | ||||||||||||
24 | + | + | − | + | + | ||||||||||||
25 | ≈ | ≈ | ≈ | + | + | ||||||||||||
26 | − | + | − | − | + | ||||||||||||
27 | ≈ | + | + | + | + | ||||||||||||
28 | ≈ | ≈ | + | + | + | ||||||||||||
29 | ≈ | + | + | − | + | ||||||||||||
30 | − | − | − | − | − | ||||||||||||
AR.21-30 | 3.00 | 3.00 | 5.00 | 4.70 | 2.90 | 3.60 | 2.80 | 3.40 | 4.50 | 3.80 | 2.80 | 2.50 | |||||
AR.1-30 | 3.75 | 3.32 | 4.79 | 4.75 | 3.46 | 3.82 | 2.86 | 3.07 | 3.89 | 3.86 | 2.25 | 2.18 | |||||
sum | 19/4/7 | 22/4/4 | 18/5/7 | 14/3/13 | 23/3/4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Q.; Wang, P. Quantum Dynamics Framework with Quantum Tunneling Effect for Numerical Optimization. Entropy 2025, 27, 150. https://doi.org/10.3390/e27020150
Tang Q, Wang P. Quantum Dynamics Framework with Quantum Tunneling Effect for Numerical Optimization. Entropy. 2025; 27(2):150. https://doi.org/10.3390/e27020150
Chicago/Turabian StyleTang, Quan, and Peng Wang. 2025. "Quantum Dynamics Framework with Quantum Tunneling Effect for Numerical Optimization" Entropy 27, no. 2: 150. https://doi.org/10.3390/e27020150
APA StyleTang, Q., & Wang, P. (2025). Quantum Dynamics Framework with Quantum Tunneling Effect for Numerical Optimization. Entropy, 27(2), 150. https://doi.org/10.3390/e27020150