Chemical Composition, Antioxidant and Antibacterial Properties of Achillea collina Becker ex Heimerl s.l. and A. pannonica Scheele Essential oils
Abstract
:Introduction
Peak No. | Components | R. I.a | A. collina (Golija) | A. pannonica (Radan) | Identification methodb |
---|---|---|---|---|---|
Monoterpene Hydrocarbons | 26.9 | 10.4 | |||
1 | α-Thujane | 932 | 0.1 | - | |
2 | α-Pinene | 935 | 1.0 | 2.0 | RT GC MS |
3 | Camphene | 951 | - | 2.0 | RT∗ MS |
4 | Sabinene | 972 | - | 2.1 | RT∗ MS |
5 | β-Pinene | 975 | 22.5 | 1.1 | RT GC MS |
6 | β-Myrcene | 987 | traces | - | RT∗ MS |
7 | α-Phellandrene | 1005 | traces | - | RT∗ MS |
8 | α-Terpinene | 1015 | 2.0 | 2.1 | RT∗ MS |
10 | Z- β-Ocimene | 1042 | traces | - | RT∗ MS |
11 | E- β-Ocimene | 1052 | traces | - | RT∗ MS |
12 | γ-Terpinene | 1060 | 1.3 | 1.1 | RT GC MS |
Oxygenated Monoterpenes | 20.8 | 78.4 | |||
1,8-Cineole | 1034 | 11.4 | 40.4 | ||
13 | Artemisia ketone | 1062 | - | 4.1 | RT∗ MS |
14 | Artemisia alcohol | 1083 | - | 3.1 | RT∗ MS |
15 | Linalool | 1099 | 1.0 | 0.9 | RT GC MS |
16 | Camphor | 1145 | 2.0 | 11.1 | RT GC MS |
17 | Borneol | 1167 | - | 3.2 | RT GC MS |
18 | Terpinen-4-ol | 1176 | 1.5 | 4.4 | RT GC MS |
19 | 1- α-Terpineol | 1188 | 2.6 | 1.9 | RT GC MS |
20 | Piperitone | 1248 | - | 2.0 | RT GC MS |
21 | E-Chrysanthenyl acetate | 1235 | - | 6.0 | RT∗ MS |
22 | Z-Chrysanthenyl acetate | 1262 | - | 1.2 | RT∗ MS |
23 | Bornyl acetate | 1288 | 0.1 | - | RT GC MS |
24 | Lavandulyl acetate | 1289 | 2.2 | - | RT∗ MS |
Sesquiterpene Hydrocarbons | 28.0 | 11.1 | |||
E-Caryophyllene | 1419 | 14.9 | - | ||
26 | α-Humulene | 1452 | 2.0 | - | RT GC MS |
27 | Germacrene D | 1490 | 11.1 | 11.1 | RT∗ MS |
Oxygenated Sesquiterpenes | 3.0 | 0.00 | |||
Caryophyllene-oxide | 1582 | 3.0 | - | ||
Proazulenes | 19.4 | 0.00 | |||
Chamazulene | 1725 | 19.4 | - | ||
Amount of identified compounds | 98.1 | 99.9 |
Results and Discussion
Chemical composition of the essential oils
Antioxidant activity
Source | Concentrations (mg/mL) | |||||||
---|---|---|---|---|---|---|---|---|
0.25 | 0.54 | 0.88 | 1.37 | 2.50 | 5.00 | 7.50 | IC50 | |
A. collina (Golija) | 17.48 | 42.90 | 59.70 | 70.00 | 80.60 | 88.80 | 90.21 | 0.62 |
A. pannonica (Radan) | 0.00 | 50.00 | 66.20 | 78.00 | 91.28 | 97.70 | 97.99 | 0.52 |
BHT (cc in μg/mL) | - | 4.62 | 11.56 | 23.12 | 30.11 | 44.71 | 55.22 | 5.37 |
Source of essential oil | Compound | Rf values |
---|---|---|
A. collina (Golija) | Camphor | 0.73 |
Chamazyulene | 0.96 | |
Mixture of mono- and sesquiterpene hydrocarbons | 0.98 | |
A. pannonica (Radan) | Borneol | 0.13 |
Camphor | 0.73 | |
Mixture of mono- and sesquiterpene hydrocarbons | 0.98 |
Organism | A. collina Golija | A. pannonica Radan | Antibioticsc | |||
---|---|---|---|---|---|---|
Ampicillin | Azitromycin | |||||
50%b | Pure oil | 50%b | Pure oil | 500 μg/mL | ||
Pseudomonas aeruginosa G-MS | 0.0 | 0.0 | 0.0 | 0.0 | R | R |
P. aeruginosa G-MS | 0.0 | 0.0 | 0.0 | 0.0 | R | R |
P. aeruginosa ATCC 27853 | 0.0 | 0.0 | 0.0 | 0.0 | R | R |
P. aeruginosa G | 0.0 | 0.0 | 0.0 | 0.0 | R | R |
P. aeruginosa G | 0.0 | 0.0 | 14.0±0.02 | 0.0 | R | R |
Escherichia coli ATCC 35218 | 0.0 | 0.0 | 9.0±0.00 | 9.2.0±0.44 | R | R |
E. coli ATCC 25922 | 12.0±0.02 | 14.0±0.02 | 16.0±0.02 | 18.6±1.48 | R | R |
E. coli (haemolytica) G | 0.0 | 0.0 | 24.4±0.89 | 0.0 | R | S |
Staphylococcus aureus G-MS | 12.0±0.00 | 13.1±0.01 | 40.0±0.00 | 40.6±1.67 | R | R |
S. aureus G | 26.0±0.00 | 25.8±0.44 | 62.0±0.00 | 64.8±0.44 | S | S |
S. aureus G | 0.0 | 20.0±0.01 | 47.0±0.00 | 45.8±0.83 | S | R |
S. aureus G | 15.0±0.02 | 15.0±0.00 | 15.0±0.00 | 20.2±0.44 | S | R |
S. aureus G | 26.0±0.01 | 34.0±1.22 | 66.4±0.89 | 66.6±0.89 | S | S |
S aureus (β-haemolytica) G | 8.0±0.00 | 0.0 | 43.8±0.83 | 62.2±1.48 | S | R |
Streptococcus pneumoniae G | 16.0±0.01 | 16.7±0.89 | 67.0±1.48 | 65.6±1.82 | S | S |
S viridans G | 60.0±0.02 | 61.8±0.44 | 60.6±1.82 | 32.8±0.44 | S | S |
S. pyogenes G | 20.0±0.00 | 21.8±0.83 | 63.8±0.89 | 63.6±1.82 | S | S |
S. agalactiae G | 18.2±1.48 | 24.0±0.00 | 20.0±0.02 | 25.6±0.55 | S | S |
S. agalactiae G | 18.0±0.00 | 0.0 | 18.4±0.89 | 20.2±0.44 | S | S |
S. agalactiae G | 0.0 | 26.4±0.89 | 15.2±0.44 | 19.6±1.67 | S | S |
S agalactiae G | 16.4±1.14 | 24.0±0.00 | 21.0±1.00 | 24.2±0.44 | S | S |
Antibacterial activity
Experimental
Plant Material
Isolation of the Essential Oil
Essential Oil Analysis
Evaluation of Antibacterial Activity
Antioxidant Activity
Free Radical Scavenging Capacity (RSC)
Determination of Lipid Peroxidation (LP)
Acknowledgements
References
- Bisset, N.G.; Wichtl, M. Herbal Drugs and Phytopharmaceuticals. CRC Press: Boca Raton, London, New York, Washington D.C., 2001; pp. 342–344. [Google Scholar]
- Candan, F.; Unlu, M.; Tepe, B.; Daferera, D.; Polissiou, M.; Sokmen, A.; Akpulat, H.A. Antioxidant and antimicrobial activity of the essential oil and methanol extracts of Achillea millefolium subsp. millefolium Afan. (Asteraceae). J. Ethnopharmacol. 2003, 87, 215–220. [Google Scholar] [CrossRef]
- Barbour, E.K.; Sharif, M.A.; Sagherian, V.K.; Habre, A.N.; Talhouk, R.S.; Talhouk, S.N. Screening of selected indigenous plants of Lebanon for antimicrobial activity. J. Ethnopharmacol. 2004, 93, 1–7. [Google Scholar]
- Skočibušić, M.; Bezić, N.; Dunkić, V.; Radonić, A. Antibacterial activity of Achillea clavennae essetial oil against respiratory tract pathogens. Fitotherapia 2004, 75, 733–736. [Google Scholar] [CrossRef]
- Stojanović, G.; Radulović, N.; Hashimoto, T.; Palić, R. In vitro antimicrobial activity of extracts of four Achillea species: The composition of Achillea clavennae L. (Asteraceae) extract. J. Ethnopharmacol. 2005, 101, 185–190. [Google Scholar] [CrossRef]
- Lis-Balchin, M.; Deans, S.G. Bioactivity of selected plant essential oils against Listeria monocytogenes. J. Appl. Bacteriol. 1997, 82, 759–762. [Google Scholar]
- Tsigarida, E.; Skandamis, P.; Nychas, G.J.E. Behaviour of Lysteria monocytogenes and autochthonous flora on meat stored under aerobic, vacuum and modified atmosphere packaging conditions with or without the presence of oregano essential oil at 5°C. J. Appl. Microbiol. 2000, 89, 901–909. [Google Scholar] [CrossRef]
- Adam, D. Global antibiotic resistance in Streptococcus pneumoniae. J. Antimicrob. Chemother. 2002, 50, 1–5. [Google Scholar] [CrossRef]
- European Pharmacopoeia Commission. European Pharmacopoeia, 4th ed.Council of Europe: Strasbourg Cedex, France, 2002. [Google Scholar]
- Blumenthal, R. The Complete German Commission E Monographs. American Botanical Council: Austin, USA, 1999; pp. 233–234. [Google Scholar]
- Saukel, J.; Länger, R. Die Achillea millefolium Gruppe (Asteraceae) in Mitteleuropa 1. Phyton 1992, 31, 185–207. [Google Scholar]
- Saukel, J.; Anchev, M.; Guo, Y.P.; Vitkova, A.; Nedelcheva, A.; Goranova, V.; Konakchiev, A.; Lambrou, M.; Nejati, S.; Rauchensteiner, F.; Ehrendorfer, F. Comments on the Biosystematics of Achillea (Asteraceae-Anthemidae) in Bulgaria. Phytol. Balcan. 2003, 9, 361–400. [Google Scholar]
- Maffei, M.; Mucciarelli, M.; Scannerini, S. Essential Oils from Achillea Species of Different Geographic Origin. Biochem. Syst. Ecol. 1994, 22, 679–687. [Google Scholar] [CrossRef]
- Kastner, U.; Saukel, J.; Zitterl-Eglseer, K.; Länger, R.; Reznicek, G.; Jurenitsch, J.; Kubelka, W. Ätherisches Öl - ein zusätzliches Merkmal für die Charakterisierung der mitteleuropäischen Taxa der Achillea millefolium-Gruppe. J. Pharm. Sci. 1992, 60, 87–99. [Google Scholar]
- Valant-Vetschera, K.M.; Wollenweber, E. Comparative Analysis of Leaf Exudate Flavonoids in Achillea subsect. Filipendulinae. Biochem. Syst. Ecol. 1996, 24, 435–446. [Google Scholar] [CrossRef]
- Kubelka, W.; Kastner, U.; Glasl, S.; Saukel, J.; Jurenitsch, J. Chemotaxonomic relevace of sesquiterpenes within the Achillea millefolium group. Biochem. Syst. Ecol. 1999, 27, 437–444. [Google Scholar] [CrossRef]
- Hofmann, L.; Fritz, D.; Nitz, S.; Kollmannsberger, H.; Drawert, F. Essential oil composition of three polyploids in the Achillea millefolium ‘complex’. Phytochemistry 1992, 31, 537–542. [Google Scholar] [CrossRef]
- Chandler, R.F.; Hooper, S.N.; Harvey, M.J. Ethnobotany and phytochemistry of Yarrow, Achillea millefolium, Composita. Econ. Bot. 1982, 36, 203–223. [Google Scholar] [CrossRef]
- Mimica-Dukić, N.; Božin, B.; Soković, M.; Simin, N. Antimicrobial and Antioxidant Activities of Melissa officinalis L. (Lamiaceae) Essential Oil. J. Agric. Food Chem. 2004, 52, 2485–2489. [Google Scholar] [CrossRef]
- Tabanaca, N.; Kirmer, N.; Demirici, B.; Demirici, F.; Baser, K.H.C. Composition and antimicrobial activity of the essential oils of Micromeria cristata ssp. phyrgia and the enantiomeric distribution of borneol. J. Agric. Food Chem. 2001, 49, 4300–4303. [Google Scholar] [CrossRef]
- Tzakou, O.; Pitarokili, D.; Chinou, I.B.; Harvala, C. Composition and antimicrobial activity of the essential oil of Salvia ringens. Planta Med. 2001, 67, 81–83. [Google Scholar] [CrossRef]
- Richardson, I.B.K. Achillea L. In Flora Europaea IV; Tutin, T.G., Heywood, V.H., Burges, N.A., Moore, D.M., Valentine, D.H., Walters, S.M., Webb, D.A., Eds.; Cambridge University Press: Cambridge, UK, 1978; pp. 159–165. [Google Scholar]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy. Allured Publishing Corp.: Carol Stream, IL, USA, 2001. [Google Scholar]
- van den Berghe, D.A.; Vlietinck, A.J. Screening Methods for Antibacterial and Antiviral Agents from Higher Plants. In Methods in Plant Biochemistry, Vol. 6, Assays for Bioactivity; Hostettman, K., Ed.; Academic Press: London, San Diego, New York, Boston, Sydney, Tokyo, Toronto, 1991; pp. 47–69. [Google Scholar]
- Sample Availability: Samples are available from the authors.
© 2008 by the authors. Licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Bozin, B.; Mimica-Dukic, N.; Bogavac, M.; Suvajdzic, L.; Simin, N.; Samojlik, I.; Couladis, M. Chemical Composition, Antioxidant and Antibacterial Properties of Achillea collina Becker ex Heimerl s.l. and A. pannonica Scheele Essential oils. Molecules 2008, 13, 2058-2068. https://doi.org/10.3390/molecules13092058
Bozin B, Mimica-Dukic N, Bogavac M, Suvajdzic L, Simin N, Samojlik I, Couladis M. Chemical Composition, Antioxidant and Antibacterial Properties of Achillea collina Becker ex Heimerl s.l. and A. pannonica Scheele Essential oils. Molecules. 2008; 13(9):2058-2068. https://doi.org/10.3390/molecules13092058
Chicago/Turabian StyleBozin, Biljana, Neda Mimica-Dukic, Mirjana Bogavac, Ljiljana Suvajdzic, Natasa Simin, Isidora Samojlik, and Maria Couladis. 2008. "Chemical Composition, Antioxidant and Antibacterial Properties of Achillea collina Becker ex Heimerl s.l. and A. pannonica Scheele Essential oils" Molecules 13, no. 9: 2058-2068. https://doi.org/10.3390/molecules13092058
APA StyleBozin, B., Mimica-Dukic, N., Bogavac, M., Suvajdzic, L., Simin, N., Samojlik, I., & Couladis, M. (2008). Chemical Composition, Antioxidant and Antibacterial Properties of Achillea collina Becker ex Heimerl s.l. and A. pannonica Scheele Essential oils. Molecules, 13(9), 2058-2068. https://doi.org/10.3390/molecules13092058