Methodologies for the Extraction of Phenolic Compounds from Environmental Samples: New Approaches
Abstract
:Introduction
Extraction methods using organic solvents
Liquid samples preparation
Matrix | Extraction technique | Characteristics | Recoveries (%) | LOD (µg·L-1) | Instrumental Analysis | Ref. |
---|---|---|---|---|---|---|
Tap, river water | On-line SPE | PPy; acetonitrile | 84–96 | 0.03–0.150 | LC-UV-Vis | [25] |
River water | SPE | Oasis MAX, n-hexane | 81–116 | 0.002–0.016 | GC-MS | [23] |
River water | SPE | OASIS; acetonitrile, dichlorometane | 60–98 | 0.009–0.03 | GC-MS/SIM | [35] |
River water | SPE | SDS-alumina (admicelles), acetonitrile | 60–91 | 50–1000 | LC-UV-Vis | [27] |
River, industrial waste water | On-line SPE | Hysphere-GP, acetonitrile, methanol | 67–129 | 0.05–0.10 | LC-DAD-EC | [24] |
Surface, reused water | SPE | LiChrolut EN, acetone | 74–92 | 20–82 | CE-CL | [33] |
Well, tap, river water | SPE | Bond Elute PPL, acetone | 25–83 | 0.0005–0.1 | GC-ECD | [32] |
River, waste water | SPME | PA, methanol | - | 2–4 0.017–0.05 | LC-UV-Vis and LC-ED | [45] |
Waste water | HS-SPME | PDMS-CAR-DVB | - | 16–22 | GC-MS/SIM | [49] |
Sewage water | HS-SPME | PDMS, CAR-PDMS | - | 0.001–0.054 | HS-GC-MS | [44] |
Landfill leachates | SPME | PA, | 65–98 | 0.005–2.5 | GC-MS | [53] |
Ground water | LPME | Accurel Q3/2 Polypropylene | 91–110 | 0.08–2.01 | GC-MS | [59] |
Solid sample preparation
Matrix | Extraction technique | Characteristics | Recoveries (%) | LOD (µg·g-1) | Instrumental Analysis | Ref. |
---|---|---|---|---|---|---|
Soil | Soxhlet | Acetone, n-hexane | - | - | GC-MS (SIM) | [46] |
Soil | Soxhlet | Methanol | 83–97 | - | LC-UV Vis | [64] |
Soil | MAE | Methanol | 53–92 | 0.03–0.08 0.02–0.55 | LC-UV andLC-APCI-MS(SIM) | [64] |
Soil | MAE | Acetone, n-hexane | 32–78 | 0.010–0.025 | GC-MS | [61] |
Ultrasound agitation | 81–99 | 0.005–0.276 | GC-FID | [65] | ||
Soil | MAE-HS-SPME | PA, H2O | 86–98 | 0.0001–0.002 | GC-ECD | [71] |
Soil | MAE-SPE | C18, acetic anhydride, triethylamine | 94–97 | 0.01–0.2 | GC-ECD | [72] |
Sludge, sediments | MAE | Methanol, acetone | 78–106 | 0.0001–0.0003 | GC-MS/MS | [68] |
Wood, leather, textiles | MAE-SPE | C-18, acetic anhydride, triethylamine | 100–106 | 0.01–0.2 | GC-ECD | [72] |
New trends in extraction methods without using organic solvents
Liquid sample preparation
Solid sample preparation
Matrix | Extraction technique | Surfactants | Recoveries (%) | LOD | Instrumental Analysis | Ref. |
---|---|---|---|---|---|---|
Sea water waste water | CPE | Oligoethylene glycol monoalkyl ether (Genapol X-080) | 66-119 | 1.0-5.0 (µg.L-1) | LC-UV | [83] |
Sea water waste water | CPE | Polyoxyethylene 10 lauryl ether (POLE) Polyoxyethylene 9 lauryl ether (Polidocanol) Polyoxyethylene 6 lauryl ether (C12E6) | 44-115 | 0.6–3.5 (µg.L-1) | LC-UV | [84] |
Water | CPE | Poly(oxyethylene)-7,5-( p-tert-octylphenyl) ether (Triton X-114) | 62-101 | 2.0-5.0 (µg.L-1) | LC-UV-EC | [85] |
River water lake water | CPE | Triton X-114 | 93-103 | 2.0-2.5 (mol.L−1) | CE-UV | [95] |
Sediments | MAME | Polyoxyethylene-6-lauryl ether | 81-120 | 1.2–12.7(µg.g−1) | LC-UV | [87] |
Soil | MAME | POLE | 70-118 | – | LC-UV | [88] |
Sediments | MAME | (Polidocanol) Oligoethylene glycol monoalkyl ether (Genapol X-080) | 79-117 | 2-20 (µg.g-1) | LC-UV | [94] |
Sea water, sewage water ground water | SPME-MD CW-TPR | POLE | 89-107 | 1.1-5.9 (µg.L-1) | LC-UV | [86] |
Sea water, sewage water ground water | SPME-MD CW-TPR PDMS PDMS-DVB PA Carboxen-PDMS | POLE, Polidocanol, Polyoxyethylene 6 lauryl ether (C12E6) Hexadecyltrimethylammonium bromide (HTAB) | 80-109 | 0.3–3.5(µg.L-1) | LC-UV | [50] |
Wood | MAME-MSPME PA | POLE | 71-125 | 0.002-0.12 (µg.g-1) | GC-MS | [90] |
Conclusions
Acknowledgments
References
- Nielson, A.H.; Allard, A.S.; Hynning, P.A. Rememberger M. Distribution, fate and persistence of organochlorine compounds formed during production of bleached pulp. Toxicol. Environ. Chem. 1991, 30, 3–41. [Google Scholar] [CrossRef]
- Moore, J.W.; Ramamoorthy, S. Phenols in Organic Chemicals in Natural Waters. In Applied Monitoring and Impact Assessment; Springer: New York, USA, 1984. [Google Scholar]
- Ohlenbusch, G.; Kumke, M.U.; Frimmel, F.H. Sorption of phenols to dissolved organic matter investigated by solid phase microextraction. Sci. Total Environ. 2000, 253, 63–74. [Google Scholar] [CrossRef]
- Kontsas, H.; Rosenberg, C.; Pfaffli, P.; Jappinen, P. Gas chromatographic-mass spectrometric determination of chlorophenols in the urine of sawmill workers with past use of chlorophenol-containing anti-stain agents. Analyst 1995, 120, 1745–1749. [Google Scholar] [CrossRef]
- Mckague, A.B. Phenolic constituents in pulp mill process streams. J. Chromatogr. A 1981, 208, 287–293. [Google Scholar] [CrossRef]
- Martínez-Uruñuela, A.; Rodríguez, I.; Cela, R.; González-Sáiz, J.M.; Pizarro, C. Development of a solid-phase extraction method for the simultaneous determination of chloroanisoles and chlorophenols in red wine using gas chromatography–tandem mass spectrometry. Anal. Chim. Acta 2005, 549, 117–123. [Google Scholar] [CrossRef]
- Lippincot, J.B. List of Worldwide Hazardous Chemical and Pollutants; The Forum for Scientific Excellence: New York, USA, 1990. [Google Scholar]
- US Environmental Protection Agency. Sampling and Analysis Procedure for Screening of Industrial Effluents for Priority Pollutants; Environment Monitoring and Support Laboratory: Cincinnati, OH, USA, 1977. [Google Scholar]
- The list of priority substances in the field of water policy and amending directive, Council directive 2455/2001/ECC, Official Journal L331. 20 November 2001; 1–5.
- Pocurull, E.; Sánchez, G.; Borrull, F.; Marcé, R.M. Automated on-line trace enrichment and determination of phenolic compounds in environmental waters by high-performance liquid chromatography. J. Chromatogr. A 1995, 696, 31–39. [Google Scholar] [CrossRef]
- Pocurull, E.; Marcé, R.M.; Borrull, F. Liquid chromatography of phenolic compounds in natural water using on-line trace enrichment. Chromatographia 1995, 40, 85–90. [Google Scholar] [CrossRef]
- Masqué, N.; Galiá, M.; Marcé, R.M.; Borrull, F. Influence of chemical modification of polymeric resin on retention of polar compounds in solid-phase extraction. Chromatographia 1999, 50, 21–26. [Google Scholar] [CrossRef]
- Ruana, J.; Urbe, I.; Borrull, F. Determination of phenols at the ng/l level in drinking and river waters by liquid chromatography with UV and electrochemical detection. J. Chromatogr. A 1993, 655, 217–226. [Google Scholar] [CrossRef]
- Wissiack, R.; Rosenberg, E.; Grasserbauer, M. Comparison of different sorbent materials for on-line solid-phase extraction with liquid chromatography-atmospheric pressure chemical ionization mass spectrometry of phenols. J. Chromatogr. A 2000, 896, 159–170. [Google Scholar] [CrossRef]
- Hart, A.P.; Dasgupta, A. A novel derivatization of phenol after extraction from human serum using perfluorooctanoyl chloride for gas chromatography-mass spectrometric confirmation and quantification. J. Forensic Sci. 1997, 42, 693–696. [Google Scholar]
- Lee, H.B.; Peart, T.E.; Hong-Yo, R.L. Determination of phenolics from sediments of pulp mill origin by in situ supercritical carbon dioxide extraction and derivatization. J. Chromatogr. A 1993, 636, 263–270. [Google Scholar] [CrossRef]
- Nick, K.; Scholer, H.F. Gas-chromatographic determination of nitrophenols after derivatisation with diazomethane. Fresenius J. Anal. Chem. 1992, 343, 304–307. [Google Scholar] [CrossRef]
- Federal Register. EPA Method 604, Phenols, Part VIII, 40 CFR Part 136; Environmental Protection Agency: Washington, DC, USA, 1984; p. 58. [Google Scholar]
- Federal Register. EPA Method 625, Base/Neutrals and Acids, Part VIII, 40 CFR Part 136; Environmental Protection Agency: Washington, DC, USA, 1984; p. 153. [Google Scholar]
- Federal Register. EPA Method 8041, Phenols by Gas Chromatography: Capillary Column Technique; Environmental Protection Agency: Washington, DC, USA, 1995; p. 1. [Google Scholar]
- Federal Register. EPA method 3540B, Soxhlet extraction, Revision 2; EPA: Washington, DC, USA, September 1994. [Google Scholar]
- Martínez, D.; Pocurull, E.; Marcé, R.M.; Borrull, F.; Calull, M. Comparative study of the use of high-performance liquid chromatography and capillary electrophoresis for determination of phenolic compounds in water samples. Chromatographia 1996, 43, 619–624. [Google Scholar] [CrossRef]
- Kojima, M.; Tsunoi, S.; Tanaka, M. High performance solid-phase analytical derivatization of phenols for gas chromatography–mass spectrometry. J. Chromatogr. A 2004, 1042, 1–7. [Google Scholar] [CrossRef]
- Patsias, J.; Papadopoulou-Mourkidou, E. Development of an automated on-line solid-phase extraction–high-performance liquid chromatographic method for the analysis of aniline, phenol, caffeine and various selected substituted aniline and phenol compounds in aqueous matrices. J. Chromatogr. A 2000, 904, 171–188. [Google Scholar] [CrossRef]
- Bagheri, H.; Mohammadi, A.; Salemi, A. On-line trace enrichment of phenolic compounds from water using a pyrrole-based polymer as the solid-phase extraction sorbent coupled with high-performance liquid chromatography. Anal. Chim. Acta 2004, 513, 445–449. [Google Scholar] [CrossRef]
- Navarro-Villoslade, F.; Pérez-Arribas, L.V.; León-González, M.E.; Polo-Díez, L.M. Preconcentration and flow-injection multivariate determination of priority pollutant chlorophenols. Anal. Chim. Acta 1995, 308, 238–245. [Google Scholar] [CrossRef]
- Saitoh, T.; Nakayama, Y.; Hiraide, M. Concentration of chlorophenols in water with sodium dodecylsulfate–γ-alumina admicelles for high-performance liquid chromatographic analysis. J. Chromatogr. A 2002, 972, 205–209. [Google Scholar] [CrossRef]
- Rodríguez, I.; Llompart, M.P.; Cela, R. Solid-phase extraction of phenols. J. Chromatogr. A 2000, 885, 291–304. [Google Scholar] [CrossRef]
- Nichkova, M.; Marco, M.P. Development and evaluation of C18 and immunosorbent solid-phase extraction methods prior immunochemical analysis of chlorophenols in human urine. Anal. Chim. Acta 2005, 533, 67–82. [Google Scholar] [CrossRef]
- Sojo, L.E.; Djauhari, J. Determination of chlorophenolics in waters by membrane solid-phase extraction: comparison between C18 and activated carbon membranes and between modes of extraction and elution. J. Chromatogr. A 1999, 840, 21–30. [Google Scholar] [CrossRef]
- Galcerán, M.T.; Jáuregui, O. Determination of phenols in sea water by liquid chromatography with electrochemical detection after enrichment by using solid-phase extraction cartridges and disks. Anal. Chim. Acta 1995, 304, 75–84. [Google Scholar] [CrossRef]
- Fattahi, N.; Samadi, S.; Assadi, Y.; Hosseini, M.R.M. Solid-phase extraction combined with dispersive liquid–liquid microextraction-ultra preconcentration of chlorophenols in aqueous samples. J. Chromatogr. A 2007, 1169, 63–69. [Google Scholar] [CrossRef]
- Tsukagoshi, K.; Kameda, T.; Yamamoto, M.; Nakajima, R. Separation and determination of phenolic compounds by capillary electrophoresis with chemiluminescence detection. J. Chromatogr. A 2002, 978, 213–220. [Google Scholar] [CrossRef]
- Heberer, T.; Stan, H.J. Detection of more than 50 substituted phenols as their t-butyldimethylsilyl derivatives using gas chromatography-mass spectrometry. Anal. Chim. Acta 1997, 341, 21–34. [Google Scholar] [CrossRef]
- de Almeida Azevedo, D.; Lacorte, S.; Vinhas, T.; Viana, P.; Barcelo, D. Monitoring of priority pesticides and other organic pollutants in river water from Portugal by gas chromatography–mass spectrometry and liquid chromatography–atmospheric pressure chemical ionization mass spectrometry. J. Chromatogr. A 2000, 879, 13–26. [Google Scholar] [CrossRef]
- Wissiack, R.; Rosenberg, E. Universal screening method for the determination of US Environmental Protection Agency phenols at lower ng.L-1 level in water samples by on-line solid-phase extraction-high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry within a single run. J. Chromatogr. A 2002, 963, 149–157. [Google Scholar] [CrossRef]
- Bagheri, H.; Saraji, M. Conductive polymers as new media for solid-phase extraction: Isolation of chlorophenols from water sample. J. Chromatogr. A 2003, 986, 111–119. [Google Scholar] [CrossRef]
- Cheung, J.; Wells, R.J. Analysis of phenolic compounds in effluent by solid-phase extraction and gas chromatography-mass spectrometry with direct on-column benzylation: sensitive negative ion chemical ionisation gas chromatography-mass spectrometry detection of phenyl benzyl ethers. J. Chromatogr. A 1997, 771, 203–211. [Google Scholar] [CrossRef]
- Borra, C.; Di Corcia, A.; Marchetti, M.; Samperi, R. Evaluation of graphitized carbon black cartridges for rapid organic trace enrichment from water: application to priority pollutant phenols. Anal. Chem. 1986, 58, 2048–2052. [Google Scholar] [CrossRef]
- Di Corcia, A.; Bellioni, A.; Diab Madbouly, M.; Marchese, S. Trace determination of phenols in natural waters Extraction by a new graphitized carbon black cartridge followed by liquid chromatography and re-analysis after phenol derivatization. J. Chromatogr. A 1996, 733, 383–393. [Google Scholar] [CrossRef]
- Pawliszyn, J. Solid Phase Microextraction: Theory and Practice; Wiley-VCH: New York, USA, 1997. [Google Scholar]
- Portillo, M.; Prohibas, N.; Salvadó, V.; Simonet, B.M. Vial position in the determination of chlorophenols in water by solid phase microextraction. J. Chromatogr. A 2006, 1103, 29–34. [Google Scholar] [CrossRef]
- Alpendurada, F. Solid-phase microextraction: a promising technique for sample preparation in environmental analysis. J. Chromatogr A 2000, 889, 3–14. [Google Scholar] [CrossRef]
- Llompart, M.; Lourido, M.; Landín, P.; García-Jares, C.; Cela, R. Optimization of a derivatization–solid-phase microextraction method for the analysis of thirty phenolic pollutants in water samples. J. Chromatogr. A 2002, 963, 137–148. [Google Scholar] [CrossRef]
- Peñalver, A.; Pocurull, E.; Borrull, F.; Marcé, R. M. Method based on solid-phase microextraction-high-performance liquid chromatography with UV and electrochemical detection to determine estrogenic compounds in water samples. J. Chromatogr. A 2002, 953, 79–87. [Google Scholar] [CrossRef]
- Lee, M.R.; Yeh, Y.C.; Hsiang, W.S.; Hwang, B.H. Solid-phase microextraction and gas chromatography–mass spectrometry for determining chlorophenols from landfill leaches and soil. J. Chromatogr. A 1998, 806, 317–324. [Google Scholar] [CrossRef]
- Llompart, M.; Blanco, B.; Cela, R. Determination of phenols in soils by in situ acetylation headspace solid-phase microextraction. J. Microcol. Sep. 2000, 12, 25–32. [Google Scholar] [CrossRef]
- Möder, M.; Schrader, S.; Franck, U.; Popp, P. Determination of phenolic compounds in waste water by solid-phase micro extraction. Fresenius J. Anal. Chem. 1997, 357, 326–332. [Google Scholar] [CrossRef]
- López Vidal, S.; Arce, L. Optimisation of a headspace solid-phase micro- extraction procedure for the determination of 2,4,6-trichloroanisole and various related compounds in cork washing waste water by use of gas chromatography-mass spectrometry. Chromatographia 2005, 62, 527–531. [Google Scholar] [CrossRef]
- Torres Padrón, M.E.; Mahugo Santana, C.; Sosa Ferrera, Z.; Santana Rodríguez, J.J. Implementation of solid-phase microextraction with micellar desorption method for priority phenolic compound determination in natural waters. J. Chromatog. Sci. 2008, 46, 325–331. [Google Scholar] [CrossRef]
- Sarrión, M.N.; Santos, F.J.; Galcerán, M.T. Determination of chlorophenols by solid-phase microextraction and liquid chromatography with electrochemical detection. J. Chromatogr. A 2002, 947, 155–165. [Google Scholar] [CrossRef]
- González-Toledo, E.; Prat, M.D.; Alpendurada, M.F. Solid-phase microextraction coupled to liquid chromatography for the analysis of phenolic compounds in water. J. Chromatog. A 2001, 923, 45–52. [Google Scholar] [CrossRef]
- Ribeiro, A.; Neves, M.H.; Almeida, M.F.; Alves, A.; Santos, L. Direct determination of chlorophenols in landfill leachates by solid-phase micro-extraction–gas chromatography–mass spectrometry. J. Chromatogr. A 2002, 975, 267–274. [Google Scholar]
- Buchholz, K.D.; Pawliszyn, J. Optimization of solid-phase microextraction (SPME) conditions for phenol analysis. Anal. Chem. 1994, 66, 160–167. [Google Scholar] [CrossRef]
- Jeannot, M.A.; Cantwell, F. Solvent microextraction into a single drop. Anal. Chem. 1996, 68, 2236–2240. [Google Scholar] [CrossRef]
- Zhao, L.; Lee, H.K. Determination of phenols in water using liquid phase microextraction with back extraction combined with high-performance liquid chromatography. J. Chromatogr. A 2001, 931, 95–105. [Google Scholar] [CrossRef]
- Palmarsdottir, S.; Thordarson, E.; Edholm, L.E.; Jönsson, J.A.; Mathiasson, L. Miniaturized supported liquid membrane device for selective on-line enrichment of basic drugs in plasma combined with capillary zone electrophoresis. Anal. Chem. 1997, 69, 1732–1737. [Google Scholar] [CrossRef]
- Rasmussen, K. E.; Pedersen-Bjergaard, S. Developments in hollow fibrebased, liquid-phase microextraction. Trends Anal. Chem. 2004, 23, 1–10. [Google Scholar] [CrossRef]
- Li-Wen, C.; Maw-Rong, L. Evaluation of liquid-phase microextraction conditions for determination of chlorophenols in environmental samples using gas chromatography–mass spectrometry without derivatization. Talanta 2008, 76, 154–160. [Google Scholar] [CrossRef]
- Di Corcia, A. Analysis of phenols by gas—liquid—solid chromatography. J. Chromatogr. 1973, 80, 69–74. [Google Scholar] [CrossRef]
- Crespín, M.A.; Gallego, M.; Valcárcel, M. Continuous microwave-assisted extraction, solvent changeover and preconcentration of monophenols in agricultural soils. J. Chromatogr. A 2000, 897, 279–293. [Google Scholar] [CrossRef]
- Li, D.; Oh, J.R.; Park, J. Direct extraction of alkylphenols, chlorophenols and bisphenol A from acid-digested sediment suspension for simultaneous gas chromatographic–mass spectrometric analysis. J. Chromatogr. A 2003, 1012, 207–214. [Google Scholar] [CrossRef]
- Tsuda, T.; Takino, A.; Kojima, M.; Harada, H.; Muraki, K. Gas chromatographic–mass spectrometric determination of 4-nonylphenols and 4-tert-octylphenol in biological samples. J. Chromatogr. B 1999, 723, 273–279. [Google Scholar] [CrossRef]
- Alonso, M.C.; Puig, D.; Silgoner, I.; Grasserbauer, M.; Barceló, D. Determination of priority phenolic compounds in soil samples by various extraction methods followed by liquid chromatography–atmospheric pressure chemical ionisation mass spectrometry. J. Chromatogr. A 1998, 823, 231–239. [Google Scholar] [CrossRef]
- Li, X.; Zeng, Z.; Zhou, J. High thermal-stable sol–gel-coated calix[4]arene fiber for solid-phase microextraction of chlorophenols. Anal. Chim. Acta 2004, 509, 27–37. [Google Scholar] [CrossRef]
- Letellier, M.; Budzinski, H. Influence of sediment grain size on the efficiency of focused microwave extraction of polycyclic aromatic hydrocarbons. Analyst 1999, 124, 5–14. [Google Scholar] [CrossRef]
- López-Ávila, V.; Young, R.; Teplitsky, N. Microwave-Assisted Extraction as an Alternative to Soxhlet, Sonication, and Supercritical Fluid Extraction. J. AOAC Int. 1996, 79, 142–156. [Google Scholar]
- Morales, S.; Canosa, P.; Rodríguez, I.; Rubí, E.; Cela, R. Microwave assisted extraction followed by gas chromatography with tandem mass spectrometry for the determination of triclosan and two related chlorophenols in sludge and sediments. J. Chromatogr. A 2005, 1082, 128–135. [Google Scholar] [CrossRef]
- Tukai, R.; Maher, W.A.; McNaught, I.J.; Ellwood, M.J. Measurement of arsenic species in marine macroalgae by microwave-assisted extraction and high performance liquid chromatography–inductively coupled plasma mass spectrometry. Anal. Chim. Acta 2000, 457, 173–185. [Google Scholar]
- Llompart, M.P.; Lorenzo, R.A.; Cela, R.; Jocelyn Paré, J.R. Optimization of a microwave-assisted extraction method for phenol and methylphenol isomers in Soil samples using a central composite design. Analyst 1997, 122, 133–137. [Google Scholar] [CrossRef]
- Wei, M.; Jen, J. Determination of chlorophenols in soil samples by microwave-assisted extraction coupled to headspace solid-phase microextraction and gas chromatography–electron-capture detection. J. Chromatogr. A 2003, 1012, 111–118. [Google Scholar] [CrossRef]
- Ganeshjeevan, R.; Chandrasekar, R.; Kadigachalam, P.; Radhakrishnan, G. Rapid, one-pot derivatization and distillation of chlorophenols from solid samples with their on-line enrichment. J. Chromatogr. A 2007, 1140, 168–173. [Google Scholar] [CrossRef]
- Watanabe, H.; Tanaka, H. A non-ionic surfactant as a new solvent for liquid-liquid extraction of zinc (II) with 1-(2-pyridylazo)-2-naphthol. Talanta 1978, 25, 585–589. [Google Scholar] [CrossRef]
- Eiguren Fernández, A.; Sosa Ferrera, Z.; Santana Rodríguez, J.J. Application of microwave-assisted extraction using micellar media to the determination of polychlorinated biphenyls in marine sediments. Anal. Chim. Acta 2001, 433, 237–244. [Google Scholar] [CrossRef]
- Padrón, C.; Eiguren, A.; Sosa, Z.; Santana, J.J. Determination of organochlorinated compounds in marine organisms by microwave-assisted extraction with molecular organized systems and liquid chromatography with fluorescence detection. J. AOAC Int. 2002, 85, 44–49. [Google Scholar]
- Prevot, A.B.; Gulmini, M.; Zelano, V.; Pramauro, E. Microwave assisted extraction of polycyclic aromatic hydrocarbons from marine sediments using nonionic surfactant solutions. Anal. Chem. 2001, 73, 3790–3795. [Google Scholar] [CrossRef]
- Sparr Eskilsson, C.; Björklund, E. Analytical-scale microwave-assisted extraction. J. Chromatogr. A 2000, 902, 227–250. [Google Scholar] [CrossRef]
- Sosa-Ferrera, Z.; Padrón-Sanz, C.; Mahugo Santana, C.; Santana-Rodríguez, J.J. The use of micellar systems in the extraction and pre-concentration of organic pollutants in environmental samples. Trends Anal. Chem. 2004, 23, 469–479. [Google Scholar] [CrossRef]
- Paleologos, E.K.; Giokas, D.L.; Karayannis, M.I. Micelle-mediated separation and cloud-point extraction. Trends Anal. Chem. 2005, 24, 426–436. [Google Scholar] [CrossRef]
- Carabias-Martinez, R.; Rodríguez-Gonzalo, E.; Moreno-Cordero, B.; Pérez-Pavón, J.L.; García-Pinto, C.; Laespada, E.F. Surfactant cloud point extraction and preconcentration of organic compounds prior to chromatography and capillary electrophoresis. J. Chromatogr. A 2000, 902, 251–265. [Google Scholar] [CrossRef]
- Frankewich, R.P.; Hinze, W.L. Evaluation and optimization of the factors affecting nonionic surfactant-mediated phase separations. Anal. Chem. 1994, 66, 944–954. [Google Scholar] [CrossRef]
- Jin, X.; Zhu, M.; Conte, E.D. Surfactant-mediated extraction technique using alkyltrimethylammonium surfactants: Extraction of selected chlorophenols from river water. Anal. Chem. 1999, 71, 514–517. [Google Scholar] [CrossRef]
- Mahugo Santana, C.; Sosa Ferrera, Z.; Santana Rodríguez, J.J. Use of non-ionic surfactant solutions for the extraction and preconcentration of phenolic compounds in water prior to their HPLC–UV detection. Analyst 2002, 127, 1031–1037. [Google Scholar] [CrossRef]
- Mahugo Santana, C.; Sosa Ferrera, Z.; Santana Rodríguez, J.J. Extraction and determination of phenolic derivatives in water samples by using polyoxyethylene surfactants and liquid chromatography with photodiode array detection. J. AOAC Int. 2004, 87, 166–171. [Google Scholar]
- Calvo Seronero, L.; Laespada, E.F.; Pérez-Pavon, J.L.; Moreno-Cordero, B. Cloud point preconcentration of rather polar compounds: application to the high-performance liquid chromatographic determination of priority pollutant chlorophenols. J. Chromatogr. A 2000, 897, 171–176. [Google Scholar] [CrossRef]
- Mahugo Santana, C.; Torres Padrón, M.E.; Sosa Ferrera, Z.; Santana Rodríguez, J.J. Development of a solid-phase microextraction method with micellar desorption for the determination of chlorophenols in water samples: Comparison with conventional solid-phase microextraction method. J. Chromatogr. A 2007, 1140, 13–20. [Google Scholar] [CrossRef]
- Mahugo Santana, C.; Sosa Ferrera, Z.; Santana Rodriguez, J.J. Use of polyoxyethylene-6-lauryl ether and microwave-assisted extraction for the determination of chlorophenols in marine sediments. Anal. Chim. Acta 2004, 524, 133. [Google Scholar] [CrossRef]
- Mahugo Santana, C.; Sosa Ferrera, Z.; Santana Rodriguez, J.J. An environmentally friendly method for the extraction and determination of priority phenols in soils using microwave-assisted micellar extraction. Anal. Bioanal. Chem. 2005, 382, 125–133. [Google Scholar] [CrossRef]
- Dec, J.; Bollag, J. Determination of covalent and noncovalent binding interactions between xenobiotic chemicals and soil. Soil Sci. 1997, 162, 858–874. [Google Scholar] [CrossRef]
- Pino, V.; Ayala, J.H.; González, V.; Afonso, A.M. Focused microwave-assisted micellar extraction combined with solid-phase microextraction—gas chromatography/mass spectrometry to determine chlorophenols in wood samples. Anal. Chim. Acta 2007, 582, 10–18. [Google Scholar] [CrossRef]
- Pino, V.; Ayala, J.H.; González, V. Solid-phase microextraction coupled to gas chromatography/mass spectrometry for determining polycyclic aromatic hydrocarbon-micelle partition coefficients. Anal. Chem. 2004, 76, 4572–4578. [Google Scholar] [CrossRef]
- Pino, V.; Conde, F.J.; Ayala, J.H.; Afonso, A.M.; González, V. Study of the interactions between phenolic compounds and micellar media using micellar solid-phase microextraction/gas chromatography. J. Chromatogr. A 2005, 1099, 64–74. [Google Scholar] [CrossRef]
- Pino, V.; Conde, F.J.; Ayala, J.H.; González, V.; Afonso, A.M. Correlations Between Phenols-Micelles Partition Coefficients and Several Molecular Descriptors. An Approach to Predict the Phenols Behaviour in MSPME. Chromatographia 2006, 63, 167–174. [Google Scholar] [CrossRef]
- Mahugo Santana, C.; Sosa Ferrera, Z.; Santana Rodríguez, J.J. A new and fast extraction method for the determination of priority phenols from marine sediments by liquid chromatography. J. Chromatog. Sci. 2005, 43, 282–288. [Google Scholar] [CrossRef]
- Wei, W.; Yin, X. B.; He, X. W. pH-mediated dual-cloud point extraction as a preconcentration and clean-up technique for capillary electrophoresis determination of phenol and m-nitrophenol. J. Chromatogr. A 2008, 1202, 212–215. [Google Scholar] [CrossRef]
- Sample Availability: Not Available.
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Mahugo Santana, C.; Sosa Ferrera, Z.; Esther Torres Padrón, M.; Juan Santana Rodríguez, J. Methodologies for the Extraction of Phenolic Compounds from Environmental Samples: New Approaches. Molecules 2009, 14, 298-320. https://doi.org/10.3390/molecules14010298
Mahugo Santana C, Sosa Ferrera Z, Esther Torres Padrón M, Juan Santana Rodríguez J. Methodologies for the Extraction of Phenolic Compounds from Environmental Samples: New Approaches. Molecules. 2009; 14(1):298-320. https://doi.org/10.3390/molecules14010298
Chicago/Turabian StyleMahugo Santana, Cristina, Zoraida Sosa Ferrera, M. Esther Torres Padrón, and José Juan Santana Rodríguez. 2009. "Methodologies for the Extraction of Phenolic Compounds from Environmental Samples: New Approaches" Molecules 14, no. 1: 298-320. https://doi.org/10.3390/molecules14010298
APA StyleMahugo Santana, C., Sosa Ferrera, Z., Esther Torres Padrón, M., & Juan Santana Rodríguez, J. (2009). Methodologies for the Extraction of Phenolic Compounds from Environmental Samples: New Approaches. Molecules, 14(1), 298-320. https://doi.org/10.3390/molecules14010298