Next Article in Journal
In Vitro Antioxidant and Xanthine Oxidase Inhibitory Activities of Methanolic Swietenia mahagoni Seed Extracts
Previous Article in Journal
The Effect of Long-Running Severe Selenium-Deficiency on the Amount of Iron and Zinc in the Organs of Rats
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

13C-NMR Data of Three Important Diterpenes Isolated from Euphorbia Species

1
Jiangsu Key Laboratory for TCM Formulae Research, Nanjing University of Chinese Medicine, Nanjing 210046, China
2
Affiliated Hospital, Nanjing University of Chinese Medicine, Kunshan, China
*
Authors to whom correspondence should be addressed.
Molecules 2009, 14(11), 4454-4475; https://doi.org/10.3390/molecules14114454
Submission received: 21 October 2009 / Revised: 2 November 2009 / Accepted: 4 November 2009 / Published: 6 November 2009

Abstract

:
Euphorbia species are widely distributed plants, many of which are used in folk medicine. Over the past twenty years, they have received considerable phytochemical and biological attention. Their diterpenoid constituents, especially those with abietane, tigliane, ingenane skeletons, are thought to be the main toxicant and bioactive factors. In this work, the utility of 13C-NMR spectroscopy for the structural elucidation of these compounds is briefly discussed.

1. Introduction

The Euphorbia is the largest genus in the plant family Euphorbiaceae, comprising about 2,000 known species [1]. Euphorbia are widely distributed throughout both hemispheres and range in morphology from large desert succulents to trees and even some small herbaceous plant types. Researched parts in various Euphorbia species include the roots, seeds, latex, lactiferous tubes, stem wood, stem barks, leaves, and whole plants.
Many studies have suggested that these plants have not only therapeutic relevance but that they also display toxicity [2]. Some constituents of Euphorbia species may be promising lead compounds for drug development. Certain Euphorbia species have been reported to possess antitumor activity and have been recommended for use as anticancer remedies [3,4]. Their antitumor activity was mainly attributed to the presence of abietane diterpene derivatives, most of which contain lactone structures reported to possess potent antineoplastic activity toards various cancer cell lines [5,6,7,8,9]. Moreover, some Euphorbia species have been also used as medicinal plants for the treatment of skin diseases, gonorrhea, migraines, intestinal parasites, warts and for mediating pain perception [10,11,12]. Many researchers have shown that Euphorbia species also possess antiproliferative activity [13], cytotoxicity [14], antimicrobial activity [15], antipyretic-analgesic activity [16], inhibition of HIV-1 viral infection [17], inhibitory activity on the mammalian mitochondrial respiratory chain [18], etc.
As mentioned, there are also some reports of toxicity in Euphorbia species. Their toxic substances originate from the milky sap, which is a deterrent to insects and herbivores [19]. Besides, they may possess extreme proinflammatory and tumor promoting toxicities [20,21]. Severe pain and inflammation can result from contact with the eyes, nose, mouth and even skin, which may be due to the activation of protein kinase C enzyme [22]. The toxic constituents of Euphorbia species were considered to be a kind of specific diterpenes, globally called phorboids, which comprise tigliane, ingenane and daphnane diterpene derivatives [23,24].
Terpenes, including diterpenes and triterpenes, have been frequently found in Euphorbia species. Steroids, cerebrosides, glycerols, phenolics and flavonoids were also isolated from plants of the genus [10], but the compounds most relevant to the toxicity and considerable biological activities in Euphorbia are diterpenes, especially those with abietane, tigliane, and ingenane skeletons [10].
Many researchers have suggested that there was a close relationship between the structures and the biological activity, so the structure elucidation is very important for these diterpenes. In this review article, we summarize the 13C-NMR data of these three important diterpene skeleton types of Euphorbia species, covering 42 abietanes, 51 ingenanes and 30 tiglianes. The structure-activity relationship and the features on the chemical shifts were also briefly discussed.

2. Abietane Derivates Isolated from Euphorbia Species (Table 1)

Most plants of the genus Euphorbia contain abietane diterpenoids, which usually have an extra α,β-unsaturated γ-lactone ring located between C-12 and C-13, and some of which have an epoxy ring at C-8 and C-14, or C-11 and C-12, as is the case of 714. Some carbons of these diterpenes, especially C-8, C-14, C-11 and C-12 are frequently substituted by hydroxyl groups or form double bonds. Compounds 3236 indicate that the 18-Me and C-3 could form a three-membered ring. In addition, some abietanes (3942) without lactone rings were also isolated from the genus Euphorbia. Many abietane diterpenoids exhibit inhibitive activity on various types of tumor cells, such as ANA-1, B16, Jurkat cells [25], K562 cells [7] and LNCaP cells [6]. By comparing the active compound 8 with the inactive one 12, it could be concluded that the C-11/C-12 epoxy ring system was necessary in mediating cytotoxicity. Compounds 2 and 3 are diastereomers, differing only in the stereochemistry at the chiral centers C-8 and C-14, but only compound 2 showed activity, which suggested that the ring C configuration is also crucial for the activity [25]. The α,β-unsaturated lactone is not the only necessary group for the cytotoxic effects, since compounds 3 and 12 do not show cytotoxicity [25]. In addition, the similar compounds 18, 19, 26 and 28 were tested in the inhibition of P-glycoprotein transport activity. The higher inhibitory effect of 26 might be derived from the carbonyl position at C-2, most probably due to the conformational and functional changes in the P-gp induced by the particular structures of helioscopinolides [26].
Table 1. Abietane diterpenoids isolated from Euphorbia species.
Table 1. Abietane diterpenoids isolated from Euphorbia species.
NoNameSpeciesRef
17β-Hydroxy-8α,14-dihydro jolkinolide EE. terracina[27]
2Yuexiandajisu DE. ebracteolata[25]
3Yuexiandajisu EE. ebracteolata[25]
4ent-8β,14α-Dihydroxy-13(15)-ene-16(12β)-abietanolideE. wallichii[28]
5ent-8β,14β-Dihydroxy-13(15)-ene-16(12β)-abietanolideE. wallichii[28]
6Ebracteolatanolide BE. ebracteolata[25]
7Ebracteolatanolide AE. ebracteolata[25]
8Jolkinolide BE. fischeriana,[29]
E. sessiliflora[30]
917-Hydroxyjolkinolide BE. fischeriana[31]
1017-Acetoxyjolkinolide BE. fischeriana[31]
1117-Acetoxyjolkinolide AE. fischeriana[32]
12Jolkinolide AE. wallichii[28]
E. fischeriana[29]
E. fidjiana[33]
E. guyoniana[34]
1317-Hydroxyjolkinolide AE. fischeriana[32]
E. fidjiana[33]
143α-Hydroxyjolkinolide AE. wallichii[28]
157β-Hydroxy-ent-abieta-8(14),13(15)-dien-12α,16-olideE. seguieriana[35]
167β,9β-Dihydroxy-ent-abieta-8(14),13(15)-dien-12α,16-olideE. seguieriana[35]
17ent-Abieta-8(14),13(15)-dien-16,12-olide [Jolkinolide E]E. fidjiana[33]
E. characias[34]
E. guyoniana[36]
18Helioscopinolide AE. pubescens[37]
E. semiperfoliata[38]
E. helioscopia[39]
19Helioscopinolide BE. pubescens[37]
E. semiperfoliata[38]
E. helioscopia[39]
E. calyptrata[40]
20Helioscopinolides HE. calyptrata[40]
21ent-11α-Hydroxyabieta-8(14),13(15)-dien-16,12α-olideE. ebracteolata[25]
E. sessiliflora[30]
E. fidjiana[33]
22ent-12-Hydroxy-12[R]-abieta-8(14 ),13(15)-dien-16,12-olideE. sessiliflora[30]
237β,11β,12β-Trihydroxy-ent-abieta-8(14),13(15)-dien-16,12-olideE. fischeriana[31]
24Langduin BE. fischeriana[32]
25Helioscopinolide CE. helioscopia[39,41]
26Helioscopinolides FE. calyptrata[40]
27Helioscopinolide DE. calyptrate[42]
28Helioscopinolide EE. calyptrate[42]
29Helioscopinolides IE. calyptrata[40]
308α,14-Dihydro-7-oxo-jolkinolide EE. characias[36]
318α,14-Dihydro-7-oxohelioscopinolide A [caudicifolin]E. sessiliflora[30]
E. characias[36]
E. semiperfoliata[38]
323,4,18β-Cyclopropa-8β-hydroxy-14-oxo-ent-abiet-13,15-en-16,12-olideE. retusa[43]
333,4,18β-Cyclopropa-14-oxo-ent-abieta-8,9,13,15-dien-16,12-olideE. retusa[43]
343,4,18β-Cyclopropa-14-oxo-ent-abieta-7,13,15-dien-16,12-olideE. retusa[43]
353,4,18β-Cyclopropa-7-hydroxy-14-oxo-ent-abieta-8,9,13,15-dien-16,12-olideE. retusa[43]
363,4,18β-Cyclopropa-14-oxo-ent-abiet-7-en-16,12-olideE. retusa[43]
37ent-16-Hydroxy-13[R]-pimar-8(14) -ene-3,15-dioneE. fidjiana[33]
38ent-l2α,16-Dihydroxy-13[R]-pimar-8(14) -ene-3,15-dioneE. fidjiana[33]
3913β-Hydroxy-ent-abiet-8(14)-en-7-oneE. fischeriana[31]
40Methyl 8β,11β-dihydroxy-12-oxo-ent-abieta-13, 15(17)-dien-16-oateE. portulacoides[44]
4111,16-Epoxy-ent-abieta-8,11,15-triene-13,14-dioneE. guyoniana[34]
4211-Hydroxy-ent-abieta-8,11,13-trien-15-oneE. guyoniana[34]
Figure 1. Abietane diterpenoids isolated from Euphorbia species.
Figure 1. Abietane diterpenoids isolated from Euphorbia species.
Molecules 14 04454 g001

3. Ingenane Derivates Isolated from Euphorbia Species (Table 2)

Ingenane diterpenoids have a very unique structural feature: they all have a same 5/7/7/3-tetracyclic ring system and a ketone bridge between C-8 and C-10. There is a double bond between C-1 and C-2 in ring A, and another double bond between C-6 and C-7 in ring B. A β-hydroxyl group is linked to C-4, so ring A/B must be trans-joined. Besides, ring D is a cyclopropane ring. Some positions at C-3, C-5, C-13, C-17 and C-20 may be linked to oxygen-substituted residues, such as hydroxyl, acetyl ester, long-chain alkyl ester, benzoyl ester groups, and so forth. This type of diterpenoids have been widely reported in many Euphorbia species. Some researchers have shown that these diterpenoids have antinematodal and termiticidal activity [45,46]. There were also reports about toxicity such as tumor promoting and proinflammatory activity [20,47,48]. Studies on the relationships between structure and irritant activity indicate that presence of a hydroxyl on C-20 is crucial for stimulatory properties. Introduction of an acetyl group in the 20-position results in a lower irritancy [49]. Some 20-deoxyingenol diterpenes induced cell cleavage arrest, but this activity became weak when C-16 had an acyl residue [50]. Acetylation in the 5-position resulted into a considerable depression of irritancy [49]. The skin tumor promoting and irritant activities of the ingenol-3-esters depend on the length of the aliphatic chain in their ester moiety [51]. In addition, the presence of one free hydroxy group at C-3 or C-5 may play an important role in the antinematodal activity [45].
Table 2. Ingenane diterpenoids isolated from Euphorbia species.
Table 2. Ingenane diterpenoids isolated from Euphorbia species.
NoNameSpeciesRef
43IngenolE.kansui[45]
E. paralias[48]
4413-O-DodecanoylingenolE. kansui[45]
4517-[(2Z,4E,6Z)-Deca-2,4,6-trienoyloxy] [ingenol]E. cauducifolia.[21]
4620-EicosanoateE. iberica[52]
473,5,20-O-TriacetylingenolE. kansui[45]
4817-Hydroxyingenol tetraacetateE. kamerunica[53]
495,20-O-Diacetyl-3-O-(2″,3″-dimethylbutanoyl)-13-O-dodecanoylingenolE. kansui[45]
5020-Tetradecanoate-ingenol-3,5-diacetateE. broteri[54]
5117-O-Acetyl-3-O-[(Z)-2-methyl-2-butenoyl]-20-deoxy-17-hydroxy-ingenolE. trigona[55]
5220-O-Acetyl-3-O-[(Z)-2-methyl-2-butenoyl]ingenolE. trigona[55]
535,17,20-O-Triacetyl-3-O-[(Z)-2-methyl-2-butenoyl]-17-hydroxyingenolE. trigona[55]
543-O-(2,3-Dimethylbutanoyl)-13-O-dodecanoylingenolE. kansui[45]
E. cyparissias[46]
553-O-(2,3-Dimethylbutanoyl)-13-O-decanoylingenolE. kansui[45]
E. cyparissias[46]
563,20-O-Diacetylingenol 5-O-(2'E,4'Z)-tetradecadienoateE. petiolata[56]
575,20-O-Diacetylingenol 3-O-(2'E,4'Z)-tetradecadienoaE. petiolata[56]
58Ingenol-3-O-(2'E,4'Z)-tetradecadienoE. petiolata[56]
595,20-O-Isopropy1ideny1ingero1 3-O-(2'Z,4'Z)-tetradecadienoateE. petiolata[56]
6020-O-Acetylingenol-3-O-(2"E,4"Z)-decadienoateE. petiolata[57]
6120-Acetyl-ingenol-3-decadienoateE. broteri[54]
623-Tetradecanoate-ingenol-5,20-diacetateE. broteri[54]
635-Tetradecanoate-ingenol-3,20-diacetateE. broteri[54]
6417-Benzoyloxy-3-O-(2,3-dimethylbutanoyl)-20-deoxyingenolE. esula[58]
6517-Benzoyloxy-3-O-(2,3-dimethylbutanoyl)-13-(2,3-dimethylbutanoyloxy)-20-deoxyingenolE. esula[58]
6617-Benzoyloxy-3-O-(2,3-dimethylbutanoyl)-13-(2,3-dimethylbutanoyloxy) ingenolE. esula[58]
6713,17-Dibenzoyloxy-3-O-(2,3-dimethylbutanoyl)ingenolE. esula[58]
6813,17-Dibenzoyloxy-3-O-(2,3-dimethylbutanoyl)-20-deoxyingenolE. esula[58]
693-O-(2,3-dimethylbutanoyl)-13-octanoyloxyingenolE. esula[58]
7017-Benzoyloxy-3-O-(2,3-dimethylbutanoyl)-13-octanoyloxyingenolE. esula[58]
7117-Benzoyloxy-20-O-(2,3-dimethylbutanoyl)-13-(2,3-dimethylbutanoyloxy)ingenolE. esula[58]
7217-Benzoyloxy-13-octanoyloxyingenolE. esula[58]
7320-O-Benzoyl-17-benzoyloxy-13-octanoyloxyingenolE. esula[58]
7417-Benzoyloxy-20-O-(2,3-dimethylbutanoyl)-13-octanoyloxyingenolE. esula[58]
753-O-Benzoyl-17-benzoyloxy-13-(2,3-dimethylbutanoyloxy)ingenolE. esula[58]
763-O-Benzoyl-13,17-dibenzoyloxyingenolE. esula[58]
773-O-Benzoyl-13-octanoyloxyingenolE. esula[58]
783-O-Benzoyl-17-benzoyloxy-13-octanoyloxyingenolE. esula[58]
793-O-Benzoyl-17-benzoyloxy-13-octanoyloxy-20-deoxyingenolE. esula[58]
80Ingenol-3-angelate-5,20-diacetateE. canariensis[59]
E. acrurensis[60]
815-Deoxyingenol-3-angelate-20-acetateE. canariensis[59]
8217-Acetoxyingenol-5,20-diacetate-3-angelateE. kamerunica[53]
83Ingenol-3-angelateE. canariensis[59]
8417-Hydroxyingenol-3-angelate-17-benzoateE. canariensis[59]
8517-Hydroxyingenol-3-angelate-20-acetate-17-benzoateE. canariensis[59]
8617-Acetoxyingenol-20-acetate-3-angelateE. canariensis[59]
8717-Hydroxyingenol 17-benzoate 20-angelateE. canariensis[59]
883-O-Angeloyl-17-[(2Z,4E,6Z)-deca-2,4,6-trienoyloxy]ingenolE. cauducifolia[21]
8917-Acetyloxy-3-O-angeloyl-ingenolE. cauducifolia[21]
903-O-Angeloyl-17-(benzoyloxy)ingenolE. cauducifolia[21]
9120-O-Acetyl-3-O-angeloyl-17-hydroxyingenolE. cauducifolia[21]
9220-O-Acetyl-3-O-angeloyl-17-(benzoyloxy)ingenolE. cauducifolia[21]
933-O-Acetyl-20-O-angeloyl-17-hydroxyingenolE. cauducifolia[21]
Figure 2. Ingenane Diterpenoids Isolated from Euphorbia Species.
Figure 2. Ingenane Diterpenoids Isolated from Euphorbia Species.
Molecules 14 04454 g002

4. Tigliane Derivates Isolated from Euphorbia Species (Table 3)

The tigliane diterpenoids in Euphorbia have a 5/7/6/3-tetracyclic ring system. Rings A/B are usually in trans-integrated configuration, as in compounds 9498 and 100120. Only a few tigliane diterpenoids, such as 99 and 121, are in cis-configuration. Rings B/C are joined in trans-configuration and Rings B/C in cis-configuration. Most tigliane diterpenoids have polyhydroxy groups located on C-4, C-9, C-13 and C-20. C-3 forms a carbonyl group. C1,2 and C6,7 form double bonds, respectively. Like the abietane and the ingenane diterpenoids, the hydroxyl groups of tigliane diterpenoids are easily esterified, as in compounds 98103. This type of macrocyclic deterpene, which is widespread in the seeds, roots, latex and stem of Euphorbia genus, is the main toxic constituent causing irritant, proinflammatory and tumor promoting activity [18,61,62]. When the C12-OH and C13-OH were esterified as a bis-ester, the tumor promoting activity was reinforced at the same time. For example, 12-O-tetradecanoylphorbol 12-acetate (TPA) is well-known as a tumor promotor. The diterpene ester with a saturated aliphatic long chain acyl group exhibited high irritant activity and high tumor promoting activity, and the highly unsaturated analogue exhibits high irritant activity, but very weak tumor promoting activity, suggesting that the irritant activity but not the tumour promoting activity of these diterpenoids is related to the degree of unsaturation of the aliphatic long chain [63]. The absence of a C20-OH is known to be important for the irritant and tumor promoting activities of phorbol esters [64]. Introduction of an acetyl group in the 20-position gives rise to a lower irritancy [65]. Compounds 122 and 123 belong to the daphnane diterpene group, which may be derived from the tigliane diterpenoids by cleavage of ring D and isopropenyl linked on C-13.
Table 3. Tigliane diterpenoids isolated from Euphorbia species.
Table 3. Tigliane diterpenoids isolated from Euphorbia species.
No.NameSpeciesRef
9413-Acetoxy-12-deoxyphorbol [Prostratin]E. fischeriana[66]
9520-Hydroxy-12-deoxyphorbol 13-(cis-9,10-methylene)-undecanoateE. poisonii[14]
9620-Hydroxy-12-deoxyphorbol angelateE. poisonii[14]
9712-Deoxyphorbaldehyde-l3-acetateE. fischeriana[31]
9812-Deoxyphorbaldehyde-13-hexadecacetateE. fischeriana[31]
994,12-Dideoxy(4α)phorbol-13-hexadecanoateE. guyoniana[67]
10012-O-(2Z,4E-Octadienoyl)-4-deoxyphorbol-13,20-diacetateE. broteri[54]
1014,12,20-Trideoxyphorbol-13-(2,3-dimethyl)butyrateE. pithyusa subsp[68]
10212-O-(2Z,4E-octadienoyl)-phorbol-13,20-diacetateE. broteri[54]
10312-Deoxyphorbol-13-(9Z)-octadecanoate-20-acetateE. fischeriana[31]
10413-O-Acetyl-20-O-benzoyl-12-deoxyphorbolE. cornigera[69]
10513-O-Acetyl-20-O-p-methoxybenzoyl-12-deoxyphorbolE. cornigera[69]
10613-O-Acetyl-20-O-decanoyl-12-deoxyphorbolE. cornigera[69]
10713-O-Butanoyl-20-O-decanoyl-12-deoxyphorbolE. cornigera[69]
10813-O-Hexanoyl-20-O-decanoyl-12-deoxyphorbolE. cornigera[69]
10913-O-Octanoyl-20-O-decanoyl-12-deoxyphorbolE. cornigera[69]
11013,20-DidecanoylphorbolE. cornigera[69]
11113-O-Dodecanoyl-20-O-decanoyl-12-deoxyphorbolE. cornigera[69]
11213-O-Decanoyl-20-O-angelyl-12-deoxyphorbolE. cornigera[69]
11313-O-Decanoyl-20-O-tiglyl-12-deoxyphorbolE. cornigera[69]
11412-Deoxyphorbol 20-acetate 13-angelateE. poisonii[14]
11512-Deoxyphorbol 20-acetate 13-phenylacetateE. poisonii[14]
1164,20-Dideoxyphorbol 12,13-bis(isobutyrate)E. obtusifolia[70]
1174-Deoxyphorbol 12,13-bis(isobutyrate)E. obtusifolia[70]
11817-Acetoxy-4-deoxyphorbol 12,13-bis(isobutyrate)E. obtusifolia[70]
11917-Acetoxy-4,20-dideoxyphorbol 12,13-bis(isobutyrate)E. obtusifolia[70]
1204-Deoxyphorbol 12,13-bis(isobutyrate) 20-acetateE. obtusifolia[70]
1214-Epi-4-Deoxyphorbol 12,13-bis(isobutyrate)E. obtusifolia[70]
12220-(4-Hydroxy-3-methoxyphenylacetate)9,13,14-orthophenylacetateE. poisonii[14]
12320-Hydroxyresiniferol 9,13,14-orthophenylacetateE. poisonii[14]
Figure 3. Tigliane diterpenoids isolated from Euphorbia species.
Figure 3. Tigliane diterpenoids isolated from Euphorbia species.
Molecules 14 04454 g003

5. 13C-NMR Data of Diterpenes

Table 4 shows the 13C-NMR data of the diterpenoids 1–123. All the 13C-NMR data were recorded in CDCl3. The structures and the carbon chemical shifts of the abietane diterpenoids are quite different from each other. Here we only discuss the most frequent abietane lactones 135. Four carbons (C-12, C-13, C-15 and C-16) of the lactone ring are the main feature, and their chemical shifts are around δC 78.5–80.0, 148.4–165.0, 117.0–132.8 and 167.0–178.0, respectively.
Table 4. 13C-NMR data (in CDCl3) of diterpenes from Euphorbia species.
Table 4. 13C-NMR data (in CDCl3) of diterpenes from Euphorbia species.
CarbonCompound / δC (in ppm)
1234567891011121314
138.040.938.343.240.541.941.641.441.441.340.041.439.337.6
218.418.017.320.118.717.417.118.518.518.518.418.418.427.0
342.040.941.343.243.139.938.640.039.239.041.539.841.578.2
432.732.332.434.234.137.837.633.333.533.533.533.433.539.2
546.854.755.356.657.055.655.453.253.653.553.553.453.552.9
630.219.816.722.019.218.017.721.221.020.920.820.820.920.5
768.939.934.943.136.335.535.436.536.635.733.834.034.033.9
835.17574.475.777.675.074.860.866.967.461.361.161.361.0
942.562.656.358.047.472.072.166.647.047.851.951.751.851.6
1038.036.937.240.339.040.540.548.239.139.341.641.341.441.1
1127.567.365.029.929.057.265.461.361.661.9107.6104.1106.4103.4
1278.579.079.779.079.979.779.885.485.585.3149.5147.4147.3147.6
13163.4157.5160.3165.3166.5161.2160.3148.4150.8154.5147.2144.9146.5144.8
1426.771.971.873.574.365.257.455.653.655.354.354.454.454.3
15120.5124.2125.9123.2125.5125.0126.0130.1150.8128.3122.3125.1127.4125.4
16175.4175.4176.2178.0177.8175.4175.3169.8168.2167.4170.5170.6169.2170.4
178.46.77.98.29.49.29.08.656.554.955.48.656.38.6
1833.133.032.434.634.116.716.433.233.533.533.433.433.528.3
1921.620.820.622.422.421.821.322.121.921.921.921.921.915.5
2012.616.815.718.115.433.633.715.415.615.115.014.915.115.0
CarbonCompound / δC (in ppm)
1516171819202122232425262728
141.931.739.737.432.129.939.439.039.640.251.255.9*30.537.4
219.018.719.127.525.727.319.018.618.818.9209.4209.434.234.4
339.541.641.978.575.678.341.741.741.741.882.454.0*216.4215.6
433.133.233.639.037.839.033.633.432.941.045.038.747.147.5
547.139.955.354.348.445.455.454.046.846.753.454.546.054.8
631.031.023.923.423.423.023.822.329.930.723.023.624.124.6
772.474.437.236.837.132.737.136.071.571.136.336.432.236.6
8151.2148.4156.3151.4152.0152.6152.6154.4153.4155.2149.4149.5152.2150.2
946.779.151.951.551.677.260.851.454.855.351.351.376.950.7
1041.944.741.641.241.344.240.338.940.932.746.946.243.840.9
1127.238.427.527.527.539.764.631.269.670.227.627.640.027.8
1276.177.276.175.976.077.179.4102.4102.7104.375.375.376.975.6
13155.1153.9152.3156.0156.0154.7150.1154.2152.8156.0155.0155.0154.6155.5
14115.9118.8113.9114.2114.1115.7113.5113.4114.7115.4115.2114.9115.9114.8
15118.9130.0116.2116.4116.4117.9118.2116.3121.0124.0117.5117.3118.1117.1
16174.9174.3175.4175.3175.2174.7175.4173.1173.6172.1174.9174.7174.6175.1
178.58.68.38.228.728.98.58.18.455.58.333.527.126.5
1833.633.833.928.622.216.033.933.532.932.929.523.021.721.8
1921.722.021.815.616.717.521.822.021.621.416.417.317.816.2
2016.117.416.816.78.28.417.314.614.314.417.38.28.38.3
CarbonCompound / δC (in ppm)
2930313233343536373839404142
123.4*37.928.233.630.431.029.831.437.537.438.939.336.636.1
2145.218.226.818.819.319.119.219.234.734.618.418.3119.019.2
3200.241.478.119.118.519.918.419.9216.521641.841.541.341.3
444.0*32.737.215.716.414.716.614.847.847.833.233.133.633.7
552.653.943.851.147.644.841.644.155.054.749.854.252.052.8
623.238.935.722.720.627.528.927.623.122.737.519.2117.318.9
736.7209.8209.433.524.4140.462.5139.935.534.6200.741.0126.233.0
8148.944.249.476.1134.6136.8135.7134.8139.9139.9138.969.5143.4139.1
948.350.153.052.6160.541.6164.940.649.050.051.861.3150.3141.5
1041.7*37.439.136.638.934.339.835.238.137.735.937.839.339.8
1127.628.123.82734.227.233.927.718.626.318.671.7152.0154.6
1275.477.577.079.578.877.978.476.731.069.829.7197.5125.4112.8
13154.9160.7160.4153.3150.6151.1149.952.946.752.171.8136.9176.4135.0
14116.024.038.5196185.7187.5187.0196.2123.7121.9139.5151.4184.8123.0
15117.7121.9122.0131.8131.1132.5132.840.0214.1215.137.8137.3120.2198.0
16174.9174.8174.8172.9172.8173.5173.3178.264.865.217.6144.226.4
1727.08.48.49.49.810.09.916.223.817.516.2128.88.533.7
182.013.127.621.522.320.522.220.425.825.632.633.833.522.2
1919.433.514.923.923.224.523.224.722.322.321.221.921.919.6
208.321.013.116.916.811.515.712.414.714.314.117.820.4
CarbonCompound / δC (in ppm)
4344454647484950515253545556
1130.0129.0131.7130.0132.2131.8130.5132.2132.1132.2131.6131.4131.4132.1
2138.8139.3136.3138.8133.2133.6136.0133.4135.8135.8136.0136.2136.2133.3
380.580.380.280.682.282.081.782.182.982.781.682.582.582.1
484.384.074.784.485.885.785.786.085.084.985.884.584.486.0
575.375.275.073.874.874.674.875.077.374.874.876.776.775.0
7127.4126.2128.4128.3131.9131.0129.7131.8123.1129.5130.9127.2127.3128.2
844.043.242.944.143.643.142.943.743.043.643.242.642.643.7
9207.8206.5205.2208.0205.4204.6204.7205.4206.0206.2204.7205.9205.9205.6
1072.472.672.072.671.971.871.872.172.072.172.071.871.872.1
1139.838.637.739.638.638.637.938.738.738.538.637.437.438.6
1230.835.035.231.031.130.835.031.130.831.230.735.035.031.2
1323.168.829.123.923.123.269.123.124.024.024.169.069.023.2
1422.928.229.423.222.924.028.023.323.723.323.228.228.223.0
1524.030.230.122.724.427.730.724.427.428.527.630.330.324.3
1628.522.524.728.528.424.222.228.524.323.124.222.422.528.4
1715.416.766.815.515.565.716.815.465.615.565.716.716.715.5
1817.318.418.217.417.016.618.017.116.717.316.618.218.217.1
1915.515.415.515.415.415.415.315.615.615.615.415.415.515.4
2067.266.862.366.465.865.765.765.921.966.865.767.167.265.9
CarbonCompound / δC (in ppm)
5758596061626364656667686970
1132.2132.0132.2132.2132.2132.0132.3132.1131.5131.0131.2131.8131.5131.1
2133.4135.9135.9136.1136.1133.5136.2136.3136.8136.8136.4136.2136.7
382.582.781.882.882.582.482.482.082.782.182.282.982.682.0
486.084.884.185.085.185.985.284.984.884.985.084.584.8
578.576.774.074.975.075.075.176.777.076.076.577.476.976.0
6135.8139.4136.6136.1136.2135.5138.4138.2140.2140.1138.3139.6140.1
7128.4128.2128.3129.3129.4132.0131.7122.8122.0125.6126.1122.2127.3125.7
843.743.543.643.943.843.743.742.842.642.743.042.942.742.6
9205.7207.0207.6206.2206.1205.3206.7205.1205.2204.9205205.8205.1
1072.272.072.372.172.372.171.571.971.971.972.071.971.7
1138.538.437.638.838.638.638.738.538.137.838.038.437.537.8
1231.131.231.231.231.331.231.230.535.635.635.335.334.435.0
1323.223.323.523.323.423.123.123.868.368.369.369.369.068.5
1423.023.023.023.123.323.323.323.428.728.528.629.028.328.4
1524.324.024.024.024.024.427.533.934.034.534.430.334.0
1628.428.528.528.528.528.528.524.218.718.518.718.722.518.5
1715.615.515.615.515.515.415.466.265.565.565.665.716.765.5
1817.117.317.517.317.317.117.116.418.018.118.017.918.217.9
1915.415.515.515.615.515.615.615.315.515.415.615.615.415.5
2066.167.164.366.866.765.965.621.621.766.667.021.867.266.7
CarbonCompound / δC (in ppm)
7172737475767778798081828384
1128.6128.6128.4128.8131.4131.5132.0131.5132.0132.0132.0131.5132.1131.6
2139.7139.8139.7139.6136.8136.8136.0136.8136.0136.0136.0133.7135.7136.2
380.480.280.180.483.083.083.383.083.681.885.781.582.582.2
484.384.384.384.384.985.184.684.985.185.880.585.784.784.9
573.875.274.073.877.376.376.977.277.274.943.774.677.176.6
6137.7141.2137.5137.8139.8140.2139.0139.8138.0133.0132.0135.9139.0139.7
7126.8125.2125.5126.7126.4126.0128.0126.4122.0132.0129.0130.8128.6127.2
843.243.343.343.342.943.042.742.942.843.644.243.143.543.2
9204.9205.4205.3204.8205.0205.1206.0204.9205.0206.0208.0204.6206.6205.9
1072.972.772.872.772.272.072.072.072.172.075.071.972.072.0
1138.838.838.838.938.038.237.638.138.538.637.038.538.338.4
1235.935.435.635.435.935.335.235.435.431.131.530.631.130.9
1368.168.468.368.369.469.369.068.668.623.123.723.123.324.3
1428.728.728.628.728.628.628.328.628.822.923.223.923.023.5
1533.833.933.933.934.034.430.334.134.124.323.627.524.027.7
1618.818.718.618.718.918.622.518.718.728.428.624.128.524.6
1765.465.765.565.565.565.616.765.565.615.415.565.615.566.2
1818.518.218.218.218.418.118.418.118.117.018.216.517.316.9
1915.215.415.315.315.615.615.615.615.615.515.615.315.515.6
2065.766.666.465.767.166.967.467.121.865.968.565.667.567.2
CarbonCompound / δC (in ppm)
8586878889909192939495969798
1131.6131.7131.3131.3131.7131.7131.7131.7131.7160.6161.4161.3160.4160.5
2136.2136.4136.8136.8136.3136.3136.7136.3136.3132.9132.7132.7133.5133.5
382.382.584.784.784.284.483.683.984.1209.2209.3209.4208.3208.4
484.984.974.274.274.274.574.374.474.173.873.873.872.872.8
574.774.974.074.074.574.274.374.375.038.738.638.534.434.6
6136.4136.3136.8136.8136.7136.5136.7136.3136.6140.4139.8140.0142.9142.9
7128.2128.7128.5128.5128.3128.4128.0128.1128.4130.4130.6130.4158.1158.2
843.243.342.142.142.942.942.442.842.939.139.239.141.441.5
9205.5205.5207.2207.2206.0205.7205.0205.4205.276.076.076.277.177.1
1072.072.171.771.771.971.971.771.871.956.255.855.755.855.8
1138.538.537.237.237.737.637.637.637.736.636.336.336.536.5
1230.930.934.934.935.135.135.235.335.232.332.031.931.731.8
1324.324.329.429.429.429.329.529.829.263.863.263.263.063.0
1423.523.529.129.129.629.429.829.629.732.832.632.832.032.1
1527.727.529.729.730.229.830.030.030.022.526.622.922.922.7
1624.524.424.824.824.824.924.724.924.723.223.123.623.123.2
1766.165.666.266.266.366.362.566.362.215.315.415.415.315.3
1816.917.018.518.518.618.718.818.218.418.818.618.618.518.6
1915.615.616.116.115.316.016.015.915.59.910.110.110.110.1
2066.566.762.262.262.462.365.566.366.467.968.368.2193.8193.8
CarbonCompound / δC (in ppm)
99100101102103104105106107108109110111
1156.9159.7161.0160.8161.3160.3160.3160.3160.3160.3160.3160.3160.3
2143.0137.3138.3135.7132.9136.3136.3136.2136.2136.3136.3136.2136.3
3213.8208.9203.0208.6208.9210.2210.3210.3210.3210.3210.3210.3210.3
450.142.644.473.673.744.544.544.544.544.644.544.644.6
525.135.134.038.838.934.034.034.134.034.034.034.134.1
6136.3136.5136.2132.9135.2139.6139.6139.7139.7139.6139.6139.6139.7
7127.7130.2126.8132.7133.7125.0125.7125.7125.7125.7125.6125.6125.6
841.042.341.939.439.542.242.242.242.242.242.242.242.2
975.577.875.278.275.977.977.977.977.977.977.977.977.9
1047.154.153.956.255.854.354.354.354.454.354.354.354.3
1137.144.146.243.236.342.342.342.342.342.342.342.442.4
1230.576.131.876.131.956.756.754.856.856.756.756.752.7
1362.765.462.865.763.665.065.065.065.165.065.065.065.0
1433.135.432.036.132.435.935.835.936.035.935.936.036.0
1522.525.722.525.722.625.825.825.825.825.825.825.825.8
1623.723.815.223.823.223.923.923.924.023.924.023.923.9
1715.216.722.916.715.317.017.016.916.917.016.916.916.8
1815.915.119.014.418.615.115.115.115.215.115.215.215.0
1910.410.210.010.110.110.210.210.310.310.210.310.310.3
2069.568.925.269.469.462.266.467.468.266.966.766.565.9
CarbonCompound / δC (in ppm)
112113114115116117118119120121122123
1160.3160.2161.5161.4160.2159.8160.0159.4159.8156.2158.2158.3
2136.2136.2132.8132.8136.3136.4136.6136.5136.5143.3136.6136.5
3210.3210.3209.1209.0210.2209.7209.7210.1209.6213.3208.4209.0
444.544.573.673.644.544.244.044.344.149.673.373.5
534.134.139.039.034.029.629.033.630.025.140.039.8
6139.6139.7134.8134.8139.0142.0142.4139.3137.2137.0135.0138.9
7125.7125.6134.1133.2125.8126.5125.3125.0130.3126.5130.8130.8
842.242.239.539.442.242.142.442.642.240.739.138.9
977.977.976.075.977.977.877.577.878.181.181.2
1054.354.355.756.754.354.253.853.954.047.455.455.5
1142.442.436.436.342.342.442.442.542.343.233.033.1
1253.856.831.931.776.776.776.176.276.475.335.735.7
1365.065.163.163.965.065.065.265.364.864.884.484.5
1436.035.932.732.335.935.836.436.535.537.180.680.8
1525.825.822.923.025.825.930.029.825.825.3146.5146.4
1623.924.023.623.023.923.819.523.824.2110.7110.7
1717.016.915.415.316.916.963.363.516.816.518.818.8
1815.215.218.618.515.115.115.215.215.011.919.819.9
1910.310.310.110.110.210.210.310.310.310.510.210.2
2067.265.969.869.725.467.567.125.468.969.370.469.3
(–) Data not observed; *interchangeable.
Affected by the α,β-unsaturated γ-lactone, the carbon chemical shifts of Me-17 is very low at δC 6.7–10.0, as shown in 17, 12, 1418, 2123, 25 and 3034. Thus, the assignment of the four methyl groups (C-17, C-18, C-19 and C-20) in compounds 1920 and 2629 [40,42] were doubtful. In their 13C-NMR spectra, chemical shifts around δC 8.0 should be assigned to C-17 instead of C-20, δC 27.0-34.0 should be assigned to C-18 instead of C-17, and δC 16.0–23.0 should be assigned to C-19 instead of C-18. Other positions, such as C-2, C-3, C-7, C-8, C-11 and C-14 are usually substituted by oxygen groups, whose carbon chemical shifts are around δC 65.0–78.0. Values close to δC115.0 can be assigned to tertiary carbon (C-14) on double bond in 1529. Some carbons of the abietane diterpenoids (27, 28 and 3036) may be carbonylated when their chemical shifts are above δC 185.0.
The carbon chemical shifts do not show very characteristic features for ingenane skeleton type. Their characteristic carbon chemical shifts are observed around δC 127.0–140.0 and 204.0–208.0, which are assigned to four carbons (C-1, C-2, C-6 and C-7) on two double bonds and the bridged carbonyl (C-9). The carbon chemical shift around δC 71.8–72.8 is assigned to the quaternary carbon (C-10) near the bridged carbonyl. The carbon chemical shifts around δC 74.0–86.0 (assigned to C-3, C-4 and C-5 with oxygen substituted) are registered in the 13C-NMR spectra of these compounds. Besides, there is another carbon (C-20) usually oxygen substituted, but it show little lower values (δC 62.3–67.2), while its value is around δC 21.6–21.8 without oxygen substitution, as the compounds 64, 65 and 68. The carbon chemical shifts of 6579 show C-13 and C-17 are registered δC 65.5–69.1 after acylation.
The structures of tigliane diterpenes can be confirmed by carbon chemical shifts around δC 203.0–210.3, 156.2–160.6, 132.7–138.3, 132.9–142.9 and 125.0–158.2 assigned to C-3, C-1, C-2, C-6 and C-7, respectively (except 99 and 121). Values close to δC 73.0 and 77.0 are assigned to the carbons C-4 and C-9 substituted by hydroxyl groups. The carbon chemical shift of C-20 is at δC 193.8 when it is substituted by hydroxyl group (97 and 98), as well as the chemical shift of C-7 is obvious higher than other tigliane diterpenes because of conjugated effect. Compounds 99 and 121 are rare A/B cis-integrated compounds, and the structure of these isomers can be confirmed from the data of 13C-NMR, for the chemical shifts of C-2 and C-3 are 4–7 ppm higher than that of the A/B trans-integrated ones.

Acknowledgements

The authors thank National Natural Science Foundation of China (No.30672678, 30973940) and “Qinglan Project” Scientific and Technological Innovation Team Training Program of Jiangsu College and University for their financial support.

References and Notes

  1. Jassbi, A.R. Chemistry and biological activity of secondary metabolites in Euphorbia from Iran. Phytochemistry 2006, 67, 1977–1984. [Google Scholar] [CrossRef]
  2. Hohmann, J.; Molnár, J. Euphorbiaceae diterpenes: Plant toxins or promising molecules for the therapy? Acta Pharm. Hung. 2004, 74, 149–157. [Google Scholar]
  3. Ahmad, W.; Nazir, M.; Khan, S.A. The chemical composition of various Euphorbia species for industrial applications. Part II. Neutral lipids of Euphorbia cauducifolia. Pak. J. Sci. Res. 1988, 31, 85–89. [Google Scholar]
  4. Duarte, N.; Gyémánt, N.; Abreu, P.M.; Molnár, J.; Ferreira, M.J.U. New macrocyclic lathyrane diterpenes, from Euphorbia lagascae, as inhibitors of multidrug resistance of tumour cells. Planta Med. 2006, 72, 162–168. [Google Scholar] [CrossRef]
  5. Yan, S.S.; Li, Y.; Wang, Y.; Shen, S.S.; Gu, Y.; Wang, H.B.; Qin, G.W.; Yu, Q. 17–Acetoxyjolkinolide B irreversibly inhibits I-kappaB kinase and induces apoptosis of tumor cells. Mol. Cancer Ther. 2008, 7, 1523–1532. [Google Scholar] [CrossRef]
  6. Liu, W.K.; Ho, J.C.K.; Qin, G.W.; Che, C.T. Jolkinolide B induces neuroendocrine differentiation of human prostate LNCaP cancer cell line. Biochem. Pharmacol. 2002, 63, 951–957. [Google Scholar]
  7. Luo, H.Y.; Wang, A.Q. Induction of apoptosis in K562 cells by jolkinolide B. Can. J. Physiol. Pharmacol. 2006, 84, 959–965. [Google Scholar] [CrossRef]
  8. Duarte, N.; Loge, H.; Ferreira, M.J.U. Antiproliferative activity of ent-abietane lactones against resistant human cancer cell lines. Planta Med. 2008, 74, 984–985. [Google Scholar]
  9. Kigoshi, H.; Ichino, T.; Yamada, K.; Ijuin, Y.; Makita, S.F.; Uemura, D. Stereostructure and bioactivities of jolkinolide D. Chem. Lett. 2001, 6, 518–519. [Google Scholar]
  10. Shi, Q.W.; Su, X.H.; Kiyota, H. Chemical and pharmacological research of the plants in genus Euphorbia. Chem. Rev. 2008, 108, 4295–4327. [Google Scholar] [CrossRef]
  11. Singla, A.K.; Pathak, K. Phytoconstituents of Euphorbia species. Fitoterapia 1990, 61, 483–516. [Google Scholar]
  12. Appendino, G.; Szallasi, A. Euphorbium: Modern research on its active principle, resiniferatoxin, revives an ancient medicine. Life Sci. 1997, 60, 681–696. [Google Scholar] [CrossRef]
  13. Xu, Z.H.; Sun, J.; Xu, R.S.; Qin, G.W. Casbane diterpenoids from Euphorbia ebracteolata. Phytochemistry 1998, 49, 149–151. [Google Scholar]
  14. Fatope, M.O.; Zeng, L.; Ohayaga, J.E.; Shi, G.; McLaughlin, J.L. Selectively cytotoxic diterpenes from Euphorbia poisonii. J. Med. Chem. 1996, 39, 1005–1008. [Google Scholar] [CrossRef]
  15. Murugan, S.; Anand, R.; Uma-Devi, P.; Vidhya, N.; Rajesh, K.A. Efficacy of Euphorbia milli and Euphorbia pulcherrima on aflatoxin producing fungi (Aspergillus flavus and Aspergillus parasiticus). Afr. J. Biotechnol. 2007, 6, 718–719. [Google Scholar]
  16. Ma, Q.G.; Liu, W.Z.; Wu, X.Y.; Zhou, T.X.; Qin, G.W. Chemical studies of Lang-Du, a traditional Chinese medicine. 1. Diterpenoids from Euphorbia fischeriana. Phytochemistry 1997, 44, 663–666. [Google Scholar]
  17. Hezareh, M. Prostratin as a new therapeutic agent targeting HIV viral reservoirs. Drug News Perspect. 2005, 18, 496–500. [Google Scholar] [CrossRef]
  18. Betancur-Galvis, L.; Palomares, E.; Marco, J.A.; Estornell, E. Tigliane diterpenes from the latex of Euphorbia obtusifolia with inhibitory activity on the mammalian mitochondrial respiratory chain. J. Ethnopharmacol. 2003, 85, 279–282. [Google Scholar] [CrossRef]
  19. Singh, A.; Agarwal, R.A. Possibility of using latex of euphorbiales for snail control. Sci. Total Environ. 1988, 77, 231–236. [Google Scholar] [CrossRef]
  20. Vogg, G.; Mattes, E.; Rothenburger, J.; Hertkorn, N.; Stefan, A.; Sandermann, J.H. Tumor promoting diterpenes from Euphorbia leuconeura L. Phytochemistry 1999, 51, 289–295. [Google Scholar]
  21. Baloch, I.B.; Baloch, M.K.; Saqib, Q.N. Tumor-Promoting Diterpene Esters from Latex of Euphorbia cauducifolia L. Helv. Chim. Acta. 2005, 88, 3145–3150. [Google Scholar] [CrossRef]
  22. Kedei, N.; Lundberg, D.J.; Toth, A.; Welburn, P.; Garfield, S.H.; Blumberg, P.M. Characterization of the Interaction of Ingenol 3-Angelate with Protein Kinase C. Cancer Res. 2004, 64, 3243–3255. [Google Scholar] [CrossRef]
  23. Cateni, F.; Falsone, G.; Zilic, J. Terpenoids and glycolipids from Euphorbiaceae. Mini-Rev. Med. Chem. 2003, 3, 425–437. [Google Scholar] [CrossRef]
  24. Zayed, S.; Farghaly, M.; Soliman, S.M.; Gotta, H.; Sorg, B.; Hecker, E. Dietary cancer risk from conditional cancerogens (tumor promoters) in produce of livestock fed on species of spurge (Euphorbiaceae) V. Skin irritant and tumor-promoting diterpene ester toxins of the tigliane and ingenane type in the herbs Euphorbia nubica and Euphorbia helioscopia contaminating fodder of livestock. J. Cancer Res. Clin. Oncol. 2001, 127, 40–47. [Google Scholar] [CrossRef]
  25. Shi, H.M.; Williams, I.D.; Sung, H.H.Y.; Zhu, H.X.; Ip, N.Y.; Min, Z.D. Cytotoxic diterpenoids from the roots of Euphorbia ebracteolata. Planta Med. 2005, 71, 349–354. [Google Scholar] [CrossRef]
  26. Ferreira, M.U.; Gyémánt, N.; Madureira, A.M.; Molnár, J. Inhibition of P-glycoprotein transport activity in a resistant mouse lymphoma cell line by diterpenic lactones. Anticancer Res. 2005, 25, 3259–3262. [Google Scholar]
  27. Marco, J.A.; Sanz-Cervera, J.F.; Yuste, A.; Jakupovic, J. Isoterracinolides A and B, novel bishomoditerpene lactones from Euphorbia terracina. J. Nat. Prod. 1999, 62, 110–113. [Google Scholar] [CrossRef]
  28. Wang, H.; Zhang, X.F.; Cai, X.H.; Ma, Y.B.; Luo, X.D. Three new diterpenoids from Euphorbia wallichii. Chin. J. Chem. 2004, 22, 199–202. [Google Scholar]
  29. Pan, Q.; Shi, M.F.; Min, Z.D. Studies on the 2D NMR spectra of Jolkinolide diterpenoids from Euphorbia fischriana. J. Chin. Pharm. Univ. 2004, 35, 16–19. [Google Scholar]
  30. Sutthivaiyakit, S.; Thapsut, M.; Prachayasittikul, V. Constituents and bioactivity of the tubers of Euphorbia sessiliflora. Phytochemistry 2000, 53, 947–950. [Google Scholar] [CrossRef]
  31. Wang, Y.B.; Huang, R.; Wang, H.B.; Jin, H.Z.; Lou, L.G.; Qin, G.W. Diterpenoids from the roots of Euphorbia fischeriana. J. Nat. Prod. 2006, 69, 967–970. [Google Scholar] [CrossRef]
  32. Che, C.T.; Zhou, T.X.; Ma, Q.G.; Qin, G.W.; Williams, I.D.; Wu, H.M.; Shi, Z.S. Diterpenes and aromatic compounds from Euphorbia fischeriana. Phytochemistry 1999, 52, 117–21. [Google Scholar]
  33. Lal, A.R.; Cambie, R.C.; Rutledge, P.S.; Woodgate, P.D. Chemistry of fijian plants. 6. Ent-pimarane and ent-abietane diterpenes from Euphorbia fidjiana. Phytochemistry 1990, 29, 2239–2246. [Google Scholar]
  34. Haba, H.; Lavaud, C.; Marcourt, L.; Long, C.; Harkat, H.; Benkhaled, M. Ent-abietane diterpenoids from Euphorbia guyoniana Boiss. & Reut. Biochem. Syst. Ecol. in press.
  35. Jeske, F.; Jakupovic, J.; Berendsohn, W. Diterpenes from Euphorbia seguieriana. Phytochemistry 1995, 40, 1743–1750. [Google Scholar]
  36. Appendino, G.; Belloro, E.; Cesare-Tron, G.; Jakupovic, J.; Ballero, M. Polycyclic diterpenoids from Euphorbia characias. Fitoterapia 2000, 71, 134–142. [Google Scholar] [CrossRef]
  37. Valente, C.; Pedro, M.; Duarte, A.; Nascimento, M.S.J.; Abreu, P.M.; Ferreira, M.J.U. Bioactive diterpenoids, a new jatrophane and two ent-abietanes, and other constituents from Euphorbia pubescens. J. Nat. Prod. 2004, 67, 902–904. [Google Scholar] [CrossRef]
  38. Appendino, G.; Jakupovic, S.; Tron, G.C.; Jakupovic, J.; Milon, V.; Ballero, M. Macrocyclic diterpenoids from Euphorbia semiperfoliata. J. Nat. Prod. 1998, 61, 749–756. [Google Scholar] [CrossRef]
  39. Shizuri, Y.; Kosemura, S.; Yamamura, S.; Ohba, S.; Ito, M.; Saito, Y. Isolation and structures of helioscopinolides, new diterpenes from Euphorbia helioscopia L. Chem. Lett. 1983, 12, 65–68. [Google Scholar]
  40. Crespi-Perellino, N.; Garofano, L.; Arlandini, E.; Pinciroli, V.; Minghetti, A.; Vincieri, F.F.; Danieli, B. Identification of new diterpenoids from Euphorbia calyptrata cell cultures. J. Nat. Prod. 1996, 59, 773–776. [Google Scholar] [CrossRef]
  41. Zhang, W.; Guo, Y.W. Chemical Studies on the constituents of the Chinese medicinal herb Euphorbia helioscopia L. Chem. Pharm. Bull. 2006, 54, 1037–1039. [Google Scholar] [CrossRef]
  42. Borghi, D.; Baumer, L.; Ballabio, M.; Arlandini, E.; Perellino, N.C.; Minghetti, A.; Vincieri, F.F. Structure elucidation of helioscopinolides D and E from Euphorbia calyptrata cell cultures. J. Nat. Prod. 2004, 54, 1503–1508. [Google Scholar]
  43. Haba, H.; Lavaud, C.; Magid, A.A.; Benkhaled, M. Diterpenoids and triterpenoids from Euphorbia retusa. J. Nat. Prod. 2009, 72, 1258–1264. [Google Scholar] [CrossRef]
  44. Morgenstern, T.; Bittner, M.; Silva, M.; Aqueveque, P.; Jakupovic, J. Diterpenes and phloracetophenones from Euphorbia portulacoides. Phytochemistry 1996, 41, 1149–1153. [Google Scholar]
  45. Shi, J.S.; Li, Z.X.; Nitoda, T.; Minoru, I.; Hiroshi, K.; Naomichi, B.; Kazuyoshi, K.; Shuhei, N. Antinematodal activities of ingenane diterpenes from Euphorbia kansui and their derivatives against the pine wood nematode. Z. Naturforsch., C: Biosci. 2008, 63, 59–65. [Google Scholar]
  46. Shi, J.X.; Li, Z.X.; Izumi, M.; Baba, N.; Nakajima, S. Termiticidal activity of diterpenes from the roots of Euphorbia kansui. Z. Naturforsch., C: Biosci. 2008, 63, 51–58. [Google Scholar]
  47. Matsumoto, T.; Cyong, J.C.; Yamada, H. Stimulatory effects of ingenols from Euphorbia kansui on the expression of macrophage Fc receptor. Planta Med. 1992, 58, 255–258. [Google Scholar] [CrossRef]
  48. Sayed, M.D.; Riszk, A.; Hammouda, F.M.; Elmissiry, M.M.; Williamson, E.M.; Evans, F.J. Constituents of Egyptian Euphorbiaceae. 9. Irritant and cyto-toxic ingenane esters from Euphorbia paralias L. Experientia 1980, 36, 1206–1207. [Google Scholar] [CrossRef]
  49. Marston, A.; Hecker, E. On the active principles of the Euphorbiaceae. 6. Isolation and biological-activities of seven milliamines from Euphorbia milii. Planta Med. 1983, 47, 141–147. [Google Scholar] [CrossRef]
  50. Wang, L.Y.; Wang, N.L.; Yao, X.S.; Miyata, S.; Kitanaka, S. Studies on the bioactive constituents in Euphorbiaceae, part 3. Diterpenes from the roots of Euphorbia kansui and their in vitro effects on the cell division of Xenopus. Chem. Pharm. Bull. 2003, 51, 935–941. [Google Scholar] [CrossRef]
  51. Sorg, B.; Schmidt, R.; Hecker, E. Structure activity relationships of polyfunctional diterpenes of the ingenane type. I. Tumor-promoting activity of homologous, aliphatic 3-esters of ingenol and of Δ7,8-isoingenol-3-tetradecanoate. Carcinogenesis 1987, 8, 1–4. [Google Scholar] [CrossRef]
  52. Oksuz, S.; Ulubelen, A.; Barla, A.; Kohlbau, H.J.; Voelter, W. Triterpenoids and a diterpene from Euphorbia iberica. Planta Med. 1999, 65, 475–477. [Google Scholar] [CrossRef]
  53. Connoly, J.D.; Facunle, C.O.; Rycroft, D.S. Five ingol esters and a 17-hydroxyingenol ester from the latex of Euphorbia kamerunica. Assignment of esters using 13C-NMR. methods. Tetrahedron Lett. 1984, 25, 3773–3776. [Google Scholar] [CrossRef]
  54. Urones, J.G.; Barcala, P.B.; Cuadrado, M.J.S.; Marcos, I.S. Diterpenes from the Latex of Euphorbia broteri. Phytochemistry 1988, 27, 207–212. [Google Scholar]
  55. Tada, M.; Seki, H. Toxic diterpernes from Euphorbia trigona (Saiunkaku: an indoor foliage plant in Japan). Agric. Biol. Chem. 1989, 53, 425–430. [Google Scholar] [CrossRef]
  56. Shi, Y.P.; Jia, Z.J.; Ma, B.; Saleh, S.D.; Lahham, J. Ingenane diterpenes from Euphorbia petiolata. Planta Med. 1996, 62, 260–262. [Google Scholar] [CrossRef]
  57. Shi, J.G.; Jia, Z.J.; Yang, L. Lathyrane and ingenane diterpenoids from Euphorbia micractina. Planta Med. 1994, 60, 588–589. [Google Scholar] [CrossRef]
  58. Lu, Z.Q.; Yang, M.; Zhang, J.Q.; Chen, G.T.; Huang, H.L.; Guan, S.H.; Ma, C.; Liu, X.; Guo, D.A. Ingenane diterpenoids from Euphorbia esula. Phytochemistry 2008, 69, 812–819. [Google Scholar]
  59. Marco, J.A.; Sanz–Cervera, J.F.; Yuste, A. Ingenane and lathyrane diterpenes from the latex of Euphorbia canariensis. Phytochemistry 1997, 45, 563–570. [Google Scholar]
  60. Marco, J.A.; Sanz-Cervera, J.F.; Ropero, F.J.; Checa, J.; Fraga, B.M. Ingenane and lathyrane diterpenes from the latex of Euphorbia acrurensis. Phytochemistry 1998, 49, 1095–1099. [Google Scholar]
  61. Ott, H.H.; Hecker, E. Highly irritant ingenane type diterpene esters from Euphorbia cyparissias L. Experientia 1981, 37, 88–91. [Google Scholar] [CrossRef]
  62. Wu, D.G.; Sorg, B.; Hecker, E. Oligocyclic and macrocyclic diterpenes in thymelaeaceae and Euphorbiaceae occurring and utilized in Yunnan (Southwest China). 6. Tigliane type diterpene esters from latex of Euphorbia prolifera. Phytother. Res. 1994, 8, 95–99. [Google Scholar] [CrossRef]
  63. Marston, A.; Hecker, E. Active principles of the Euphorbiaceae. 7. Milliamine H and milliamine I, peptide esters of 20-deoxy-5x-hydroxyphorbol from Euphorbia milii. Planta Med. 1984, 50, 319–322. [Google Scholar] [CrossRef]
  64. Wu, D.G.; Sorg, B.; Adolf, W.; Seip, E.H.; Hecker, E. Oligo- and macrocyclic diterpenes in thymelaeaceae and Euphorbiaceae occurring and utilized in Yunnan (Southwest China). 2. Ingenane type diterpene esters from Euphorbia nematocypha Hand.-Mazz. Phytother. Res. 1992, 6, 237–240. [Google Scholar] [CrossRef]
  65. Furstenberger, G.; Hecker, E. On the active principles of the Euphorbiaceae, XII. Highly unsaturated irritant diterpene esters from Euphorbia tirucalli originating from Madagascar. J. Nat. Prod. 1986, 49, 386–397. [Google Scholar] [CrossRef]
  66. Liu, W.Z.; Wu, X.Y.; Yang, G.J.; Ma, Q.G.; Zhou, T.X.; Tang, X.C.; Qin, G.W. 12-deoxyphorbol esters from Euphorbia fischeriana. Chin. Chem. Lett. 1996, 7, 917–918. [Google Scholar]
  67. Haba, H.; Lavaud, C.; Harkat, H.; Alabdul-Magid, A.; Marcourt, L.; Benkhaled, M. Diterpenoids and triterpenoids from Euphorbia guyoniana. Phytochemistry 2007, 68, 1255–1260. [Google Scholar]
  68. Appendino, G.; Belloro, E.; Tron, G.C.; Jakupovic, J; Ballero, M. Diterpenoids from Euphorbia pithyusa subsp. cupanii. J. Nat. Prod. 1999, 62, 1399–1404. [Google Scholar] [CrossRef]
  69. Baloch, I.B.; Baloch, M.K.; Saqib, Q. Anti-tumor 12-deoxyphorbol esters from Euphorbia cornigera. Eur. J. Med. Chem. 2008, 43, 274–281. [Google Scholar] [CrossRef]
  70. Marco, J.A.; Sanz-Cervera, J.F.; Checa, J.; Palomares, E.; Fraga, B.M. Jatrophane and tigliane diterpenes from the latex of Euphorbia obtusifolia. Phytochemistry 1999, 52, 479–485. [Google Scholar]
  • Sample Availability: Samples of the compounds 8, 12, 61 and 94 are available from the authors.

Share and Cite

MDPI and ACS Style

Wu, Q.-C.; Tang, Y.-P.; Ding, A.-W.; You, F.-Q.; Zhang, L.; Duan, J.-A. 13C-NMR Data of Three Important Diterpenes Isolated from Euphorbia Species. Molecules 2009, 14, 4454-4475. https://doi.org/10.3390/molecules14114454

AMA Style

Wu Q-C, Tang Y-P, Ding A-W, You F-Q, Zhang L, Duan J-A. 13C-NMR Data of Three Important Diterpenes Isolated from Euphorbia Species. Molecules. 2009; 14(11):4454-4475. https://doi.org/10.3390/molecules14114454

Chicago/Turabian Style

Wu, Qi-Cheng, Yu-Ping Tang, An-Wei Ding, Fen-Qiang You, Li Zhang, and Jin-Ao Duan. 2009. "13C-NMR Data of Three Important Diterpenes Isolated from Euphorbia Species" Molecules 14, no. 11: 4454-4475. https://doi.org/10.3390/molecules14114454

APA Style

Wu, Q. -C., Tang, Y. -P., Ding, A. -W., You, F. -Q., Zhang, L., & Duan, J. -A. (2009). 13C-NMR Data of Three Important Diterpenes Isolated from Euphorbia Species. Molecules, 14(11), 4454-4475. https://doi.org/10.3390/molecules14114454

Article Metrics

Back to TopTop