Preparation of Superhydrophobic Polymeric Film on Aluminum Plates by Electrochemical Polymerization
Abstract
:1. Introduction
2. Results and Discussion
2.1. Polymeric Film Structures
2.2. Properties of Polymeric Film
3. Experimental
3.1. Materials and Reagents
3.2. Electrochemical Polymerization
3.3. Measurements
4. Conclusions
Acknowledgments
References and Notes
- Sun, R.D.; Nakajima, A.; Fujishima, A.; Watanabe, T.; Hashimoto, K. Photoinduced surface wettability conversion of zno and tio2 thin films. J. Phys. Chem. B 2001, 105, 1984–1990. [Google Scholar] [CrossRef]
- Miwa, M.; Nakajima, A.; Jujishima, A.; Hashimoto, K.; Watanabe, T. Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces. Langmuir 2000, 16, 5754–5760. [Google Scholar] [CrossRef]
- Nakajima, A.; Fujishima, A.; Hashimoto, K.; Watanabe, T. Preparation of transparent superhydrophobic boehmite and silica films by sublimation of aluminum acetylacetonate. Adv. Mater. 1999, 11, 1365–1368. [Google Scholar] [CrossRef]
- Roach, P.; Shirtcliffe, N.J.; Newton, M.I. Progess in superhydrophobic surface development. Soft Matter 2008, 4, 224–240. [Google Scholar] [CrossRef]
- Zhang, X.; Shi, F.; Niu, J.; Jiang, Y.; Wang, Z. Superhydrophobic surfaces: from structural control to functional application. J. Mater. Chem. 2008, 18, 621–633. [Google Scholar] [CrossRef]
- Feng, L.; Song, S.; Zhai, J.; Liu, B.; Xu, J.; Jiang, L.; Zhu, D. Super-Hydrophobicity of nanostructured carbon films in all pH range. Angew. Chem.Int. Ed. 2003, 42, 800–802. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.J.; Jiang, L. Design and creation of superwetting/antiwetting surfaces. Adv. Mater. 2006, 18, 3063–3078. [Google Scholar] [CrossRef]
- Roach, P.; McHale, G.; Evans, C.R.; Shirtcliffe, N.J.; Newton, M.I. Decoupling of the liquid response of a superhydrophobic quartz crystal microbalance. Langmuir 2007, 23, 9823–9830. [Google Scholar] [CrossRef] [PubMed]
- Larmour, I.A.; Bell, S.E.J.; Saunders, G.C. Remarkably simple fabrication of superhydrophobic surfaces using electroless galvanic deposition. Angew. Chem. Int. Ed. 2007, 46, 1710–1712. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, F.; Fu, S.; Duan, X. In Situ microstructure control of oriented layered double hydroxide monolayer films with curved hexagonal crystals as superhydrophobic materials. Adv. Mater. 2006, 18, 3089–3093. [Google Scholar] [CrossRef]
- Zhang, F.; Zhao, L.; Chen, H.; Xu, S.; Evans, D.G.; Duan, X. Corrosion resistance of superhydrophobic layered double hydroxide films on aluminum. Angew. Chem. Int. Ed. 2008, 47, 2466–2470. [Google Scholar] [CrossRef] [PubMed]
- Qu, M.N.; Zhang, B.W.; Song, S.Y.; Chen, L.; Zhang, J.Y.; Cao, X.P. Fabrication of superbydrophobic surfaces on engineering materials by a solution-immersion process. Adv. Funct. Mater. 2007, 17, 593–596. [Google Scholar] [CrossRef]
- Qian, B.T.; Shen, Z.Q. Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates. Langmuir 2005, 21, 9007–9009. [Google Scholar] [CrossRef] [PubMed]
- Han, J.T.; Xu, X.R.; Cho, K.W. Diverse access to artificial superhydrophobic surfaces using block copolymers. Langmuir 2005, 21, 6662–6665. [Google Scholar] [CrossRef] [PubMed]
- Tsai, P.S.; Yang, Y.M.; Lee, Y.L. Hierarchically structured superhydrophobic coatings fabricated by successive Langmuir–Blodgett deposition of micro-/nano-sized particles and surface silanization. Nanotechnology 2007, 18, 465604–465610. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Lau, S.P.; Yang, H.Y.; Leong, E.S.P.; Yu, S.F.; Prawer, S. Stable super-hydropbobic surface via carbon nanotubes coated with a ZnO thin film. J. Phys. Chem. B 2005, 109, 7746–7748. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.D.; Fan, G.Q.; Zhao, N.; Guo, X.L.; Xu, J.; Dong, J.Y.; Zhang, L.Y.; Zhang, Y.J.; Han, C.C. Facile creation of a bionic super-hydrophobic block copolymer surface. Adv. Mater. 2004, 16, 1830–1833. [Google Scholar] [CrossRef]
- Kang, Z.X.; Ye, Q.; Sang, J.; Li, Y.Y. Fabrication of super-hydrophobic surface on copper surface by polymer plating. J. Mater. Proc. Tech. 2009, 209, 4543–4547. [Google Scholar] [CrossRef]
- Mori, K.; Hirahara, H.; Oishi, Y. Electrochemical polymerization of 2-(dioctylamino)-1,3,5-triazine-4,6-dithiol on iron plates. Langmuir 1995, 11, 1431–1434. [Google Scholar] [CrossRef]
- Qu, M.N.; Zhang, B.W.; Song, S.Y.; Chen, L.; Zhang, J.Y.; Cao, X.P. Fabrication of superhydrophobic surfaces on engineering materials by a solution-immersion process. Adv. Funct. Mater. 2007, 17, 593–596. [Google Scholar] [CrossRef]
- Wang, F.; Mori, K.; Kang, Z.X.; Oishi, Y. Magnetic Field Effects on the Polymerization of 6-N,N-Dioctylamino-1,3,5-triaziene- 2,4-dithiol. Heteroat. Chem. 2007, 18, 60–64. [Google Scholar] [CrossRef]
- Mori, K.; Hirahara, H.; Oishi, Y.; Kumagai, N. Polymer plating of 2-diotylamino-1,3,5-triazine-4,6-dithiol to magnesium alloys. Electrochem. Solid-State Lett. 2000, 3, 546–549. [Google Scholar] [CrossRef]
- Mori, K.; Sasaki, Y.; Hirahara, H.; Oishi, Y. Accelerating effect of NaNO2 on the polymer plating of 6-substituted-1,3,5-triazine-2,4-dithiol mono sodium salts. J. Appl. Polym. Sci. 2001, 82, 2300–2309. [Google Scholar] [CrossRef]
- Mori, K.; Kang, Z.X.; Wang, F.; Oishi, Y. Polymer Plating of 6-(N-Allyl-1,1,2,2-Tetrahydroperfluorodecyl)Amino-1,3,5-Triazine-2,4-Dithiol Monosodium on Aluminum in Magnetic Field and its Electrostatic Capacity. IEEE Trans. on Appl. Supercond. 2004, 14, 1177–1180. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are available from the authors. |
Time ( min ) | C1s (%) | N1s (%) | S2p (%) | F1s (%) | Al2p (%) | O1s (%) |
---|---|---|---|---|---|---|
2 | 28.11 | 3.97 | 1.97 | 25.97 | 13.04 | 26.94 |
4 | 35.06 | 6.72 | 3.29 | 44.23 | 3.81 | 6.89 |
6 | 36.01 | 7.03 | 3.45 | 45.61 | 2.95 | 4.96 |
8 | 35.58 | 7.01 | 3.27 | 45.76 | 2.93 | 5.44 |
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Wang, F.; Luo, H.; Wang, Q.; Wang, J.; Xu, J. Preparation of Superhydrophobic Polymeric Film on Aluminum Plates by Electrochemical Polymerization. Molecules 2009, 14, 4737-4746. https://doi.org/10.3390/molecules14114737
Wang F, Luo H, Wang Q, Wang J, Xu J. Preparation of Superhydrophobic Polymeric Film on Aluminum Plates by Electrochemical Polymerization. Molecules. 2009; 14(11):4737-4746. https://doi.org/10.3390/molecules14114737
Chicago/Turabian StyleWang, Fang, Heyi Luo, Qian Wang, Jinggang Wang, and Juan Xu. 2009. "Preparation of Superhydrophobic Polymeric Film on Aluminum Plates by Electrochemical Polymerization" Molecules 14, no. 11: 4737-4746. https://doi.org/10.3390/molecules14114737
APA StyleWang, F., Luo, H., Wang, Q., Wang, J., & Xu, J. (2009). Preparation of Superhydrophobic Polymeric Film on Aluminum Plates by Electrochemical Polymerization. Molecules, 14(11), 4737-4746. https://doi.org/10.3390/molecules14114737