The Chemical Composition and Biological Properties of Coconut (Cocos nucifera L.) Water
Abstract
:1. Introduction
2. Chemical Composition of Coconut Water
2.1. Phytohormones
2.1.1. Auxin
2.1.2. Cytokinins
N6-Furfuryladenine (Kinetin)
trans-Zeatin
2.1.3. Gibberellins (GAs)
2.2. Inorganic ions
2.3. Vitamins
3. Conclusions
4. Future Studies
Acknowledgements
References
- Lopes, M.A.; Larkins, B.A. Endosperm origin, development and function. Plant cell 1993, 5, 1383–1399. [Google Scholar] [CrossRef] [PubMed]
- Janick, J.; Paull, R.E. The Encyclopedia of Fruit & Nuts; CAB International: Wallingford, UK, 2008; p. 112. [Google Scholar]
- Patrick, J.W.; Offler, C.E. Compartmentation of transport and transfer events in developing seeds. J. Exp. Bot. 2001, 52, 551–564. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, H.; Morisaki, N.; Tago, Y.; Hashimoto, Y.; Iwasaki, S.; Kawachi, E.; Nagata, R.; Shudo, K. Structural identification of a major cytokinin in coconut milk as 14-O-(3-O-[β-D-galactopyranosyl-(1-->2)-α-D-galactopyranosyl-(1-->3)-α-L-arabinofuranosyl]-4-O-(α-L-arabino-furanosyl)-β-D-galactopyranosyl)-trans-zeatin riboside. Chem. Pharm. Bull. 1997, 45, 260–264. [Google Scholar] [CrossRef] [PubMed]
- Sandhya, V.G.; Rajamohan, T. Comparative evaluation of the hypolipidemic effects of coconut water and lovastatin in rats fed fat-cholesterol enriched diet. Food Chem. Toxicol. 2008, 45, 3585–3592. [Google Scholar] [CrossRef] [PubMed]
- Asian and Pacific Coconut Community (APCC). International Codes and Standard for Aqueous Coconut Products; 2nd draft; Standards Task Force, Asian and Pacific Coconut Community: Jakarta, Indonesia, 1994. [Google Scholar]
- Seow, C.C.; Gwee, C.N. Coconut milk: Chemistry and technology. Int. J. Food Sci. Tech. 1997, 32, 189–201. [Google Scholar] [CrossRef]
- George, E.F.; Sherrington, P.D. Plant Propagation by Tissue Culture-Handbook and Directory of Commercial Laboratories; Exegetics Ltd: Edington, UK, 1984. [Google Scholar]
- Mariat, F. Influence du lait du coco et du coprah sur le de´velopement de jeunes plantules de Cattleya. Bull. Soc. Bot. Fr. 1951, 98, 260–263. [Google Scholar] [CrossRef]
- Mauney, J.R.; Hillman, W.S.; Miller, C.O.; Skoog, F; Clayton, R.A.; Strong, F.M. Bioassay, purification and properties of a growth factor from coconut. Physiol. Plant. 1952, 5, 485–497. [Google Scholar] [CrossRef]
- Shaw, M.; Srivastava, B.I.S. Purine-Like substances from coconut endosperm and their effect on senescence in excised cereal leaves. Plant Physiol. 1964, 39, 528–532. [Google Scholar] [CrossRef]
- Zakaria, Z.A.; Reezal, I.; Mat Jais, A.M.; Somchit, M.N.; Sulaiman, M.R.; Marmin, A.H.I.; Sidek, H.; Husin, S.H.; Rahim, M.H.A.; Abdul Rahman, L. The anti-inflammatory, anti-pyretic and wound healing activities of Cocos nucifera L. (MATAG types) fresh juice and kernel extract in experimental animals. J. Pharmacol. Toxicol. 2006, 1, 516–526. [Google Scholar]
- Campbell-Falck, D.; Thomas, T.; Falck, T.M.; Tutuo, N.; Clem, K. The intravenous use of coconut water. Am. J. Emerg. Med. 2000, 18, 108–111. [Google Scholar] [CrossRef]
- Pummer, S.; Heil, P.; Maleck, W.; Petroianu, G. Influence of coconut water on hemostasis. Am. J. Emerg. Med. 2001, 19, 287–289. [Google Scholar] [CrossRef] [PubMed]
- Anurag, P.; Rajamohan, T. Cardioprotective effect of tender coconut water in experimental myocardial infarction. Plant Foods. Hum. Nutr. 2003, 58, 1–12. [Google Scholar] [CrossRef]
- Alleyne, T.; Roache, S.; Thomas, C.; Shirley, A. The control of hypertension by use of coconut water and mauby: Two tropical food drinks. West Indian Med. J. 2005, 54, 3–8. [Google Scholar] [CrossRef] [PubMed]
- van Overbeek, J.; Conklin, M.E.; Blakeslee, A.F. Factors in coconut milk essential for growth and development of very young Datura embryos. Science 1941, 94, 350–351. [Google Scholar] [CrossRef] [PubMed]
- Verdeil, J.L.; Hocher, V. Digestion and absorption of food in plants: A plant stomach. Trends Plant Sci. 2002, 7, 280–281. [Google Scholar] [CrossRef]
- Ang, S.L.P; Yong, J.W.H. A protocol for in vitro germination and sustainable growth of two tropical mistletoes. Plant Cell Tiss. Org. Cult. 2005, 80, 221–228. [Google Scholar] [CrossRef]
- Arditti, J. Micropropagation of Orchids, 2nd ed.; Blackwell Publishing: Oxford, UK, 2008; Volume II. [Google Scholar]
- Kende, H.; Zeevaart, J. The five “Classical” plant hormones. Plant Cell 1997, 9, 1197–1210. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.O.; Skoog, F.; Von Saltza, M.H.; Strong, F.M. Kinetin, a cell division factor from deoxyribonucleic acid. J. Am. Chem. Soc. 1955, 77, 1392–1393. [Google Scholar] [CrossRef]
- Miller, C.O.; Skoog, F.; Okumura, F.S.; von Saltza, M.H.; Strong, F.M. Isolation, structure and synthesis of kinetin, a substance promoting cell division. J. Am. Chem. Soc. 1956, 78, 1375–1380. [Google Scholar] [CrossRef]
- Letham, D.S. Zeatin, a factor inducing cell division isolated from Zea mays. Life Sci. 1963, 2, 569–573. [Google Scholar] [CrossRef]
- Vermeulen, K.; Strnad, M.; Kryštof, V.; Havlicek, L.; Van der Aa, A.; Lenjou, M.; Njis, G.; Rodrigus, I.; Stockman, B.; Van Onckelen, H.; Van Bockstaele, D.R.; Berneman, Z.N. Antiproliferative effect of plant cytokinin analogues with an inhibitory activity on cyclin-dependent kinases. Leukemia 2002, 16, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Rattan, S.I.S.; Clark, B.F.C. Kinetin delays the onset of ageing characteristics in human fibroblasts. Biochem. Biophys. Res. Commun. 1994, 201, 665–672. [Google Scholar] [CrossRef] [PubMed]
- Evans, P.; Halliwell, B. Micronutrients: Oxidant/antioxidant Status. Br. J. Nutr. 2001, 85, S67–S74. [Google Scholar] [CrossRef] [PubMed]
- Shenkin, A. The key role of micronutrients. Clinical Nutr. 2006, 25, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Tulecke, W.; Weinstein, L.; Rutner, A.; Laurencot, H. The biochemical composition of coconut water (coconut milk) as related to its use in plant tissue culture. Contrib. Boyce Thompson Inst. 1961, 21, 115–128. [Google Scholar]
- Santoso, U.; Kubo, K.; Ota, T.; Tadokoro, T.; Maekawa, A. Nutrient composition of kopyor coconuts (Cocos nucifera L.). Food Chem. 1996, 57, 299–304. [Google Scholar] [CrossRef]
- United States Department of Agriculture (USDA). National Nutrient Database for Standard Reference, 2008. Nuts, coconut water [Online]. Available: http://www.nal.usda.gov/fnic/foodcomp/cgi-bin/list_nut_edit.pl/, accessed on 9 December 2009.
- Ge, L.; Tan, S.; Yong, J.W. H.; Tan, S.N. Capillary electrophoresis for cytokinin analyses: A review. Electrophoresis 2006, 27, 4779–4791. [Google Scholar] [CrossRef] [PubMed]
- Ge, L.; Peh, C.Y.C.; Yong, J.W.H.; Tan, S.N.; Hua, L.; Ong, E.S. Analyses of gibberellins by capillary electrophoresis-mass spectrometry combined with solid-phase extraction. J. Chromatogr. A 2007, 1159, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Ge, L.; Lee, A.S.Y.; Yong, J.W.H.; Tan, S.N.; Ong, E.S. Simultaneous analysis of different classes of phytohormones in coconut (Cocos nucifera L.) water using high-performance liquid chromatography and liquid chromatography-tandem mass spectrometry after solid-phase extraction. Anal. Chim. Acta 2008, 610, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Hu, B. Simultaneous determination of several phytohormones in natural coconut juice by hollow fiber-based liquid-liquid-liquid microextraction-high performance liquid chromatography. J. Chromatogr. A 2009, 1216, 7657–7663. [Google Scholar] [CrossRef] [PubMed]
- Blakeslee, J.J.; Peer, W.A.; Murphy, A.S. Auxin transport. Curr. Opin. Plant Bio. 2005, 8, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Bialek, L.; Michalczuk, L.; Cohen, J.D. Auxin biosynthesis during seed germination in Phaseolus vulgaris. Plant Physiol. 1992, 100, 509–517. [Google Scholar] [CrossRef] [PubMed]
- Jakubowska, A.; Kowalczyk, S. A specific enzyme hydrolyzing 6-O(4-O)-indole-3-ylacetyl-β-d-glucose in immature kernels of Zea mays. J. Plant Physiol. 2005, 162, 207–213. [Google Scholar] [CrossRef]
- Berleth, T.; Krogan, N.T.; Scarpella, E. Auxin signals - turning genes on and turning cells around. Curr. Opin. Plant Bio. 2004, 7, 553–563. [Google Scholar] [CrossRef] [PubMed]
- Dharmasiri, N.; Dharmasiri, S.; Weijers, D.; Lechner, E.; Yamada, M.; Hobbie, L.; Ehrismann, J.S.; Jurgens, G.; Estelle, M. Plant development is regulated by a family of auxin receptor F Box proteins. Dev. Cell 2005, 9, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Robert, H.S.; Friml, J. Auxin and other signals on the move in plants. Nat. Chem. Biol. 2009, 5, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Werner, T.; Motyka, V.; Strnad, M.; Schmulling, T. Regulation of plant growth by cytokinin. Proc. Natl. Acad. Sci. USA 2001, 98, 10487–10492. [Google Scholar] [CrossRef] [PubMed]
- Amasino, R.M. 1955: Kinetin arrives. The 50th anniversary of a new plant hormone. Plant Physiol. 2005, 138, 1177–1184. [Google Scholar] [CrossRef] [PubMed]
- Mok, D.W.S.; Mok, M.C. Cytokinins: Chemistry, Activity and Function; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Tantikanjana, T.; Yong, J.W.H.; Letham, D.S.; Griffith, M.; Hussain, H.; Ljung, K.; Sandberg, G.; Sundaresan, V. Control of axillary bud initiation and shoot architecture in Arabidopsis by the SUPERSHOOT gene. Genes Dev. 2001, 15, 1577–1588. [Google Scholar] [CrossRef] [PubMed]
- Haberer, G.; Kieber, J.J. Cytokinins. New insights into a classic phytohormone. Plant Physiol. 2002, 128, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Frank, M.; Schmulling, T. Cytokinin cycles cells. Trends Plant Sci. 1999, 4, 243–244. [Google Scholar] [CrossRef]
- Gan, S.; Amasino, R.M. Cytokinins in plant senescence: From spray and pray to clone and play. Bioessays 1996, 18, 557–565. [Google Scholar] [CrossRef]
- Huan, L.V.T.; Takamura, T.; Tanaka, M. Callus formation and plant regeneration from callus through somatic embryo structures in Cymbidium orchid. Plant Sci. 2004, 166, 1443–1449. [Google Scholar] [CrossRef]
- Choi, B.H.; Kim, W.; Wang, Q.C.; Kim, D.C.; Tan, S.N.; Yong, J.W.H.; Kim, K.T.; Yoon, H.S. Kinetin riboside preferentially induces apoptosis by modulating Bcl-2 family proteins and caspase-3 in cancer cells. Cancer Lett. 2008, 261, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Heo, H.J.; Hong, S.C.; Cho, H.Y.; Hong, B.; Kim, H.K.; Kim, E.K.; Shin, D.H. Inhibitory effect of zeatin, isolated from Fiatoua villosa, on acetylcholinesterase activity from PC12 cells. Mol. Cells 2002, 13, 113–117. [Google Scholar] [PubMed]
- Kim, M.J.; Choi, S.J.; Lim, S.T.; Kim, H.K.; Kim, Y.J.; Yoon, H.G.; Shin, D.H. Zeatin supplement improves scopolamine-induced memory impairment in mice. Biosci. Biotechnol. Biochem. 2008, 72, 577–581. [Google Scholar] [CrossRef] [PubMed]
- Barciszewski, J.; Siboska, G.E.; Pedersen, B.O.; Clark, B.F.; Rattan, S.I. Evidence for the presence of kinetin in DNA and cell extracts. FEBS Lett. 1996, 393, 197–200. [Google Scholar] [CrossRef]
- Ge, L.; Yong, J.W.H.; Goh, N.K.; Chia, L.S.; Tan, S.N.; Ong, E.S. Identification of kinetin and kinetin riboside in coconut (Cocos nucifera L.) water using a combined approach of liquid chromatography-tandem mass spectrometry, high performance liquid chromatography and capillary electrophoresis. J. Chromatogr. B 2005, 829, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Sobieszczuk-Nowicka, E.; Wieczorek, P.; Legocka, J. Kinetin affects the level of chloroplast polyamines and transglutaminase activity during senescence of barley leaves. Acta Biochim. Pol. 2009, 56, 255–259. [Google Scholar] [PubMed]
- Letham, D.S.; Palni, L.M.S. The biosynthesis and metabolism of cytokinins. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1983, 34, 163–197. [Google Scholar] [CrossRef]
- Kaminek, M. Progress in cytokinin research. Trends Biotechnol. 1992, 10, 159–164. [Google Scholar] [CrossRef]
- Binns, A.N. Cytokinin accumulation and action: biochemical, genetic and molecular approaches. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1994, 45, 173–196. [Google Scholar] [CrossRef]
- Sharma, S.P.; Kaur, P.; Rattan, S.I.S. Plant growth hormone kinetin delays aging, prolongs the life span and slows down development of the fruitfly Zapronius paravittiger. Biochem. Biophys. Res. Commun. 1995, 216, 1067–1071. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.P.; Kaur, J.; Rattan, S.I.S. Increased longevity of kinetin-fed Zapronius fruitflies is accompanied by their reduced fecundity and enhanced catalase activity. Biochem. Mol. Biol. Int. 1997, 41, 869–875. [Google Scholar] [PubMed]
- Lee, J.H.; Chung, K.Y.; Bang, D.; Lee, K.H. Searching for aging-related proteins in human dermal microvascular endothelial cells treated with anti-aging agents. Proteomics 2006, 6, 1351–1361. [Google Scholar] [CrossRef] [PubMed]
- Minorsky, P.V. The hot and the classic. Kinetin: The elixir of life? Plant Physiol. 2003, 132, 1135–1136. [Google Scholar] [CrossRef]
- Rattan, S.I.S. Method and composition for ameliorating the adverse effects of aging. US Pat. 5371089, 1994. [Google Scholar]
- McCullough, J.L.; Weinstein, G.D. Clinical study of safety and efficacy of using topical kinetin 0.1% (Kinerase R) to treat photodamaged skin. Cosmetic Dermatol. 2002, 15, 29–32. [Google Scholar]
- Collins, A.R. Oxidative DNA damage, antioxidants and cancer. BioEssays 1999, 21, 238–246. [Google Scholar] [CrossRef]
- Olsen, A.; Siboska, G.E.; Clark, B.F.C.; Rattan, S.I.S. N6-Furfuryladenine, kinetin, protects against Fenton reaction-mediated oxidative damage to DNA. Biochem. Biophys. Res. Commun. 1999, 265, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Verbeke, P.; Siboska, G.E.; Clark, B.F.C.; Rattan, S.I.S. Kinetin inhibits protein oxidation and glycoxidation in vitro. Biochem. Biophys. Res. Commun. 2000, 276, 1265–1270. [Google Scholar] [CrossRef] [PubMed]
- Leshem, Y.Y. Plant senescence processes and free radicals. Free Radical Biol. Med. 1988, 5, 39–49. [Google Scholar] [CrossRef]
- Griffaut, B.; Bos, R.; Maurizis, J.C.; Madelmont, J.C.; Ledoigt, G. Cytotoxic effects of kinetin riboside on mouse, human and plant tumour cells. Int. J. Biol. Marcomol. 2004, 34, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Orr, M.F.; McSwain, B. The effect of kinetin upon epithelium and fibroblasts in tissue culture. Cancer 1957, 10, 617–624. [Google Scholar] [CrossRef]
- Orr, M.F.; McSwain, B. The effect of kinetin, kinetin ribofuranoside and gibberellic acid upon cultures of skin and mammary carcinoma and cystic disease. Cancer Res. 1960, 20, 1362–1364. [Google Scholar] [PubMed]
- Kowalska, E. Influence of kinetin (6-furfurylo-amino-purine) on human fibroblasts in the cell culture. Folia Morphol. 1992, 51, 109–118. [Google Scholar]
- Cheong, J.; Goh, D.; Yong, J.W.H.; Tan, S.N.; Ong, E.S. Inhibitory effect of kinetin riboside in human heptamoa, HepG2. Mol. BioSyst. 2009, 5, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Cabello, C.M.; Bair, W.B., III; Ley, S.; Lamore, S.D.; Azimian, S.; Wondrak, G.T. The experimental chemotherapeutic N6-furfuryladenosine (kinetin-riboside) induces rapid ATP depletion, genotoxic stress, and CDKN1A (p21) upregulation in human cancer cell lines. Biochem. Pharmacol. 2009, 77, 1125–1138. [Google Scholar] [CrossRef] [PubMed]
- Tiedemann, R.E.; Mao, X.; Shi, C.X.; Zhu, Y.X.; Palmer, S.E.; Sebag, M.; Marler, R.; Chesi, M.; Fonseca, R.; Bergsagel, P.L.; Schimmer, A.D.; Stewart, A.K. Identification of kinetin riboside as a repressor of CCND1 and CCND2 with preclinical antimyeloma activity. J. Clin. Invest. 2008, 118, 1750–1764. [Google Scholar] [CrossRef] [PubMed]
- Sheu, J.R.; Hsiao, G.; Shen, M.Y.; Chou, C.Y.; Lin, C.H.; Chen, T.F.; Chou, D.S. Inhibitory mechanisms of kinetin, a plant growth-promoting hormone, in platelet aggregation. Platelets 2003, 14, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, G.; Shen, M.Y.; Lin, K.H.; Chou, C.Y.; Tzu, N.H.; Lin, C.H.; Chou, D.S.; Chen, T.F.; Sheu, J.R. Inhibitory activity of kinetin on free redical formation of activated platelets in vitro and on thrombus formation in vivo. Eur. J. Pharmacol. 2003, 465, 281–287. [Google Scholar] [CrossRef]
- Barciszewski, J.; Massino, F.; Clark, B.F.C. Kinetin- a multiactive molecule. Int. J. Biol. Macromol. 2007, 40, 182–192. [Google Scholar] [CrossRef] [PubMed]
- Letham, D.S. Regulators of cell division in plant tissues. XX. The cytokinins of coconut milk. Physiol. Plant. 1974, 32, 66–70. [Google Scholar] [CrossRef]
- Letham, D.S. Regulators of cell division in plant tissues. XXI. Distribution of coefficients for cytokinins. Planta 1974, 118, 361–364. [Google Scholar] [CrossRef] [PubMed]
- Van Staden, J.; Drewes, S.E. Identification of zeatin and zeatin riboside in coconut milk. Physiol. Plant. 1975, 34, 106–109. [Google Scholar] [CrossRef]
- Laureys, F.; Dewitte, W.; Witters, E.; Van Montagu, M.; Inzé, D.; Van Onckelen, H. Zeatin is indispensable for the G2-M transition in tobacco BY-2 cells. FEBS lett. 1998, 426, 29–32. [Google Scholar] [CrossRef]
- Choi, S.J.; Jeong, C.H.; Choi, S.G.; Chun, J.Y.; Kim, Y.J.; Lee, J.M.; Shin, D.H.; Heo, H.J. Zeatin prevents amyloid beta-induced neurotoxicity and scopolamine-induced cognitive deficits. J. Med. Food 2009, 12, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Rattan, S.I.S.; Sodagam, L. Gerontomodulatory and youth-preserving effects of zeatin on human skin fibroblasts undergoing aging in vitro. Rejuvenation Res. 2005, 8, 46–57. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, B.B.; Gruissem, W.; Jones, R.L. Biochemistry & Molecular Biology of Plants. In American Society of Plant Physiologists; John Wiley & Sons, Inc.: Sommerset, NJ, USA, 2000. [Google Scholar]
- Tucker, G.A.; Roberts, J.A. Plant Hormone Protocols; Humana Press Inc.: Totowa, NJ, USA, 2000. [Google Scholar]
- Davies, P.J. Plant Hormones: Biosynthesis, Signal Transduction, Action! Kluwer Academic: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Chen, J.; Sun, Z.; Zhang, Y.; Zeng, X.; Qing, C.; Liu, J.; Li, L.; Zhang, H. Synthesis of gibberellin derivatives with anti-tumor bioactivities. Bioorg. Med. Chem. Lett. 2009, 19, 5496–5499. [Google Scholar] [CrossRef] [PubMed]
- Ge, L.; Yong, J.W.H.; Tan, S.N.; Hua, L.; Ong, E.S. Analyses of gibberellins in coconut (Cocos nucifera L.) water by partial filling - micellar electrokinetic chromatography - mass spectrometry with reversal of electroosmotic flow. Electrophoresis 2008, 29, 2126–2134. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine (IOM). Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride; National Academy Press: Washington, DC, USA, 2000. [Google Scholar]
- Institute of Medicine (IOM). Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids; National Academy Press: Washington, DC, USA, 2000. [Google Scholar]
- Institute of Medicine (IOM). Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- Wall, M.M. Ascorbic acid and mineral composition of longan (Dimocarpus longan), lychee (Litchi chinensis) and rambutan (Nephelium lappaceum) cultivars grown in Hawaii. J. Food Compost. Anal. 2006, 19, 655–663. [Google Scholar] [CrossRef]
- Saat, M.; Singh, R.; Sirisinghe, R.G.; Nawawi, M. Rehydration after exercise with fresh young coconut water, carbohydrate-electrolyte beverage and plain water. J. Physiol. Anthropol. Appl. Human Sci. 2002, 21, 93–104. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, J.C.B.; Neto, O.G.; Rohwedder, J.J.R.; Kubota, L.T. Simultaneous determination of chloride and potassium in carbohydrate electrolyte beverages using in array of ion-selective electrodes controlled by a microcomputer. J. Brazilian Chem. Soc. 2000, 11, 349–354. [Google Scholar] [CrossRef]
- Gillman, M.W.; Cupples, L.A.; Gagnon, D.; Posner, B.M.; Ellison, R.C.; Castelli, W.P.; Wolf, P.A. Protective effect of fruits and vegetables on development of stroke in men. J. Am. Med. Assoc. 1995, 273, 1113–1117. [Google Scholar] [CrossRef]
- Joshipura, K.J.; Hu, F.B.; Manson, J.E.; Stampfer, M.J.; Rimm, E.B.; Speizer, F.E.; Colditz, G.; Ascherio, A.; Rosner, B.; Spiegelman, D.; Willett, W.C. The effect of fruit and vegetable intake on risk for coronary heart disease. Ann. Intern. Med. 2001, 134, 1106–1114. [Google Scholar] [CrossRef] [PubMed]
- Bazzano, L.A.; He, J.; Ogden, L.G.; Loria, C.M.; Vupputuri, S.; Myers, L.; Whelton, P.K. Fruit and vegetable intake and risk of cardiovascular disease in US adults: The first national health and nutrition examination survey epidemiologic follow-up study. Am. J. Clin. Nutr. 2002, 76, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Riboli, E.; Norat, T. Epidemiologic evidence of the protective effect of fruit and vegetables on cancer risk, Am. J. Clin. Nutr. 2003, 78, 559–569. [Google Scholar] [CrossRef] [PubMed]
- Depeint, F.; Bruce, W.R.; Shangari, N.; Mehta, R.; O’Brien, P.J. Mitochondrial function and toxicity: Role of B vitamins on the one-carbon transfer pathways. Chem. Biol. Interact. 2006, 163, 113–132. [Google Scholar] [CrossRef] [PubMed]
- Garrett, R.H.; Grisham, G.M. Biochemistry, 3rd ed.; Thomson Brooks/Cole: Belmont, CA, USA, 2005. [Google Scholar]
- Matsuo, Y.; Greenberg, D.M. A crystalline enzyme that cleaves homoserine and cystathionine: III. Coenzyme resolution, activators, and inhibitors. J. Biol. Chem. 1958, 234, 507–515. [Google Scholar]
- Carroll, W.R.; Stacy, G.W.; du Vigneaud, V. α-Ketobutyric acid as a product in the enzymetic cleavage of cystathionine. J. Biol. Chem. 1949, 180, 375–382. [Google Scholar] [PubMed]
- Conn, E.E.; Stumpf, P.K. Outlines of Biochemistry, 3rd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1972; pp. 436–437. [Google Scholar]
- Lieberman, M.; Marks, A.D.; Smith, C. Mark’s Essentials of Medical Biochemistry. A Clinical Approach; Lippincott Williams & Wilkins: Baltimore, MD, USA, 2007. [Google Scholar]
- Goh, Y.I.; Koren, G. Folic acid in pregnancy and fetal outcomes. J. Obstet. Gynaecol. 2008, 28, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Robinson, K.; Arheart, K.; Refsum, H.; Brattström, L.; Boers, G.; Ueland, P.; Rubba, P.; Palma-Reis, R.; Meleady, R.; Daly, L.; Witteman, J.; Graham, I. Low circulating folate and vitamin B6 concentrations: Risk factors for stroke, peripheral vascular disease, and coronary artery disease. Circulation 1998, 97, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.M.; Willett, W.C.; Selhub, J.; Hunter, D.J.; Giovannucci, E.L.; Holmes, M.D.; Colditz, G.A.; Hankinson, S.E. Plasma folate, vitamin B6, vitamin B12, homocysteine, and risk of breast cancer. J. Natl. Cancer Inst. 2003, 95, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Jackson, J.C.; Gordon, A.; Wizzard, G.; McCook, K.; Rolle, R. Changes in chemical composition of coconut (Cocos nucifera L.) water during maturation of the fruit. J. Sci. Food Agri. 2004, 84, 1049–1052. [Google Scholar] [CrossRef]
- Neto, M.F.; de Holanda, J.S.; Folegatti, M.V.; Gheyi, H.R.; Pereira, W.E.; Cavalcante, L.F. Quality of green fruits of “anão verde” coconut in relation to doses of nitrogen and potassium via fertigation. Rev. Bras. Eng. Agríc. Ambient. 2007, 11, 453–458. [Google Scholar]
Sample Availability: Not Available. |
Source information | [20] | [31] | [29] | [30] | ||||
Coconut type | young | young green | mature green | mature | mature (autoclaved) | young | mature | |
Average Weight of Coconut (g) | 206 (water) | 565 | 393 | |||||
Age of coconut | 6 months | 12 months | ||||||
Source of coconut | Deerfield Beach, FL | Dominican Republic | ||||||
Proximates | (g/100g) | (g/100g ) | ||||||
Water | 94.99 | 94.18 | 94.45 | |||||
Dry | 5.01 | 5.82 | 5.55 | |||||
Energy value | 19 kcal (79 kJ) | |||||||
Protein | 0.72 | 0.12 | 0.52 | |||||
Total lipid (fat) | 0.2 | 0.07 | 0.15 | |||||
Ash | 0.39 | 0.87 | 0.47 | |||||
Carbohydrate, by difference | 3.71 | 4.76 | 4.41 | |||||
Fiber, total dietary | 1.1 | ND* | ND* | |||||
Sugars | (mg/mL) | (g/100g) | (mg/mL ) | (g/100g ) | ||||
Total | 2.61 | 9.16 | 21.68 | 13.87 | 15.20 | 5.23 | 3.42 | |
Sucrose | 9.18 | 0.93 | 9.18 | 8.90 | 10.70 | 0.06 | 0.51 | |
Glucose | 7.25 | 3.93 | 7.25 | 2.46 | 2.02 | 2.61 | 1.48 | |
Fructose | 5.25 | 4.30 | 5.25 | 2.51 | 2.48 | 2.55 | 1.43 | |
Sugar alcohols | Present a | (mg/L ) | ||||||
Mannitol | 0.8 | 0.80 | ||||||
Sorbitol | 15 d | 15.00 | ||||||
Myo-inositol | 0.01 | 0.01 | ||||||
Scyllo-inositol | 0.05 | 0.05 | ||||||
Inorganic ions | (mg/100g) | (mg/100g) | (mg/100g ) | (mg/100g ) | ||||
Calcium, Ca | 24 | 27.35 | 31.64 | |||||
Iron, Fe | 0.01 | 0.29 | 0.01 | 0.02 | 0.02 | |||
Magnesium, Mg | 30 | 25 | 30 | 6.40 | 9.44 | |||
Phosphorus, P | 37 | 20 | 37 | 4.66 | 12.77 | |||
Potassium, K | 312 | 250 | 312 | 203.70 | 257.52 | |||
Sodium, Na | 105 | 105 | 105 | 1.75 | 16.10 | |||
Zinc, Zn | 0.1 | 0.07 | 0.02 | |||||
Copper, Cu | 0.04 | 0.04 | 0.04 | 0.01 | 0.03 | |||
Manganese, Mn | 0.142 | 0.12 | 0.08 | |||||
Selenium, Se | 0.001 | |||||||
Chlorine, Cl | 183 | 183 | ||||||
Sulfur, S | 24 | 24 | 0.58 | |||||
Aluminium, Al | 0.07 | 0.06 | ||||||
Boron, B | 0.05 | 0.08 | ||||||
Vitamins | (mg/mL) | (mg/100g ) | (mg /L ) | (mg /100 dm 3) | ||||
Vitamin C, total ascorbic acid | 2.4 | 7.41 | 7.08 | |||||
Thiamin (B1) | 0.03 | Trace | Trace | 0.01 | ||||
Riboflavin (B2) | 0.057 | 0.01 | 0.01 | 0.01 | ||||
Niacin (B3) | 0.08 | 0.64 | ND* | ND* | ||||
Pantothenic acid (B5) | 0.52 | 0.043 | 0.52 | |||||
Pyridoxine (B6) | 0.032 | Trace | ND* | ND* | ||||
Folate, total | 0.03 | |||||||
Folic acid | 0.003 | 0 | 0.003 | |||||
Folate, food | 0.003 | |||||||
Folate, Dietary Folate Equivalent (DFE) | 3 (µg_DFE) | |||||||
Biotin | 0.02 | 0.02 | ||||||
Nicotinic acid (Niacin) | 0.64 | 0.64 | ||||||
Lipids | (g/100g ) | (g/100g ) | ||||||
Total | 0.2 | 0.0733 | 0.1482 | |||||
Fatty acids, total saturated | 0.176 | 0.03 | 0.1 | |||||
6:00 | 0.001 | |||||||
8:00 | 0.014 | ND* | ND* | |||||
10:00 | 0.011 | 0.0007 | 0.0028 | |||||
12:00 | 0.088 | 0.002 | 0.0274 | |||||
14:00 | 0.035 | 0.0023 | 0.019 | |||||
16:00 | 0.017 | 0.0219 | 0.032 | |||||
17:00 | 0.0009 | 0.0016 | ||||||
18:00 | 0.01 | 0.0039 | 0.0108 | |||||
20:00 | 0.0016 | 0.0033 | ||||||
Fatty acids, total monounsaturated | 0.008 | 0.03 | 0.02 | |||||
16:1 undifferentiated | 0 | 0.0011 | 0.0007 | |||||
18:1 undifferentiated | 0.008 | 0.0194 | 0.015 | |||||
20:1 undifferentiated | 0.0049 | 0.0019 | ||||||
22:1 undifferentiated | 0.0011 | 0.0023 | ||||||
Fatty acids, total polyunsaturated | 0.002 | 0.0128 | 0.0054 | |||||
18:2 n-6undifferentiated | 0.002 | 0.0114 | 0.0032 | |||||
20:4 n-6 | 0.0014 | 0.0022 | ||||||
Amino acids | (µg/mL) | (g/100g ) | (µg/mL) | (mg/g defatted sample) | ||||
Alanine | 312 | 0.037 | 16.40 | 127.30 | 177.10 | 198.00 | 1.13 | 3.88 |
β-Alanine | 12 | |||||||
γ-Aminobutyric acid | 820 | 1.90 | 34.60 | 168.80 | 173.20 | |||
Arginine | 133 | 0.118 | 14.70 | 25.60 | 16.80 | 20.70 | 0.13 | 0.81 |
Asparagine and glutamine | ca. 60 | |||||||
Aspartic acid | 65 | 0.07 | 11.30 | 35.90 | 5.40 | 11.40 | 1.60 | 0.76 |
Asparagine | 17.10 | 10.10 | 10.40 | 25.30 | ||||
Cystine | 0.97-1.17 b | 0.014 | 0.00 | 0.00 | ||||
Glutamic acid | 240 | 0.165 | 9.40 | 70.80 | 78.70 | 104.90 | 3.44 | 3.75 |
Glutamine | 80.00 | 45.40 | 13.40 | 2.00 | ||||
Glycine | 13.9 | 0.034 | 1.30 | 9.70 | 13.90 | 18.00 | 0.43 | 0.11 |
Homoserine | 5.2 | ND* | ND* | 5.20 | 8.80 | |||
Histidine | Trace a | 0.017 | 3.50 | 6.30 | Trace a | Trace a | 0.39 | 0.67 |
Isoleucine | 18 | 0.028 | 0.26 | 0.27 | ||||
Leucine | 22 | 0.053 | 6.20 | 37.30 | 31.70 | 33.00 | 0.66 | 0.58 |
Lysine | 150 | 0.032 | 4.40 | 21.40 | 22.50 | 13.00 | 4.72 | 3.41 |
Methionine | 8 | 0.013 | 3.50 | 16.90 | Trace a | Trace a | 0.22 | 0.21 |
Ornithine | 22 | |||||||
Phenylalanine | 12 | 0.037 | ND* | ND* | 10.20 | Trace a | 0.26 | 0.00 |
Pipecolic acid | Trace a | |||||||
Proline | 97 | 0.03 | 4.10 | 31.90 | 21.60 | 12.90 | 0.52 | 0.95 |
Serine | 111 | 0.037 | 7.30 | 45.30 | 65.80 | 85.00 | 0.64 | 1.06 |
Tyrosine | 16 | 0.022 | 0.90 | 6.40 | 3.10 | Trace a | 0.00 | 0.00 |
Tryptophan | 39 | 0.008 | 0.00 | 0.00 | ||||
Threonine | 44 | 0.026 | 2.90 | 16.20 | 26.30 | 27.40 | 0.20 | 0.33 |
Valine | 27 | 0.044 | 5.60 | 20.60 | 15.10 | 15.50 | 0.91 | 0.82 |
Dihydroxyphenylaline | Present a | |||||||
Hydroxyproline | Trace a | Trace a | 4.10 | Trace a | 8.20 | |||
Pipecolic acid | Present a | Trace a | ||||||
Nitrogeneous compounds | µmol/mL | |||||||
Ethanolamine | 0.01 | |||||||
Ammonia | Present a | |||||||
Organic acids | (meq/mL) | (meq/mL ) | (mg /100 DM) | |||||
Tartaric | 1.6 | 2.4 | ||||||
Malic | 34.31 | 9.36 | 34.31 | 11.98 | 14.08 | 317 | 307 | |
Citric | 0.37 | 0.37 | 0.31 | 0.38 | ND* | 24.8 | ||
Acetic | ND* | 1.3 | ||||||
Pyridoline | 0.39 mg/mL | 0.43 | 0.39 | 0.18 | 0.27 | |||
Succinic | 0.28 | 0.18 | ||||||
Shikimic and quinic acids, etc. | 0.57 | |||||||
Enzymes | ||||||||
Acid phosphatase | Present a | |||||||
Catalase | Present a | |||||||
Dehydrogenase | Present a | |||||||
Diastase | Present a | |||||||
Peroxidase | Present a | |||||||
RNA polymerases | Present a | |||||||
Phytohormones | (mg/mL) | (mg/L ) | ||||||
Auxin | 0.07 | 0.07 | ||||||
1,3- Diphenylurea | 5.8 | |||||||
Cytokinin | Present a | |||||||
Miscellaneous | ||||||||
Leucoanthocyanin | Present a | |||||||
Phyllococosine | Present a | |||||||
Chemical properties | ||||||||
pH | 4.6 to 5.6 | 4.7±0.1 | 5.2±0.1 |
Source information | [4] | [32,33,34] | [35] |
---|---|---|---|
Coconut type | young green | mature* | |
Auxin | nM | μg mL-1 | |
indole-3-acetic acid | 150.6 | 0.25 ± 0.03 | |
0.75 ± 0.04 | |||
1.46 ± 0.13 | |||
0.71 ± 0.12 | |||
0.78 ± 0.10 | |||
Cytokinins | |||
N6-isopentenyladenine | 0.26 | ||
dihydrozeatin | 0.14 | ||
trans-zeatin | 0.09 | ||
kinetin | 0.31 | ||
ortho-topolin | 3.29 | ||
dihydrozeatin O-glucoside | 46.6 | ||
trans-zeatin O-glucoside | 48.7 | ||
trans-zeatin riboside | 76.2 | ||
kinetin riboside | 0.33 | ||
trans-zeatin riboside-5’-monophosphate | 10.2 | ||
14-O-(3-O-[β-D-galacto-pyranosyl-(1→2) -α-D-galactopyranosyl- (1→3) -α-L- arabinofuranosyl]-4-O-(α-L-arabinofuranosyl)- β-D-galactopyranosyl)-trans-zeatin riboside | Present | ||
Gibberellins | |||
gibberellin 1 | 16.7 | ||
gibberellin 3 | 37.8 | ||
Auxin | |||
indole-3-acetic acid | 150.6 | ||
Abscisic acid | 65.5 | 0.010 ± 0.002 | |
ND | |||
0.023 ± 0.002 | |||
0.061 ± 0.019 | |||
0.071 ± 0.018 | |||
Salicylic acid | 1.01 ± 0.10 | ||
0.67 ± 0.04 | |||
1.03 ± 0.12 | |||
1.79 ± 0.21 | |||
1.22 ± 0.07 |
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Yong, J.W.H.; Ge, L.; Ng, Y.F.; Tan, S.N. The Chemical Composition and Biological Properties of Coconut (Cocos nucifera L.) Water. Molecules 2009, 14, 5144-5164. https://doi.org/10.3390/molecules14125144
Yong JWH, Ge L, Ng YF, Tan SN. The Chemical Composition and Biological Properties of Coconut (Cocos nucifera L.) Water. Molecules. 2009; 14(12):5144-5164. https://doi.org/10.3390/molecules14125144
Chicago/Turabian StyleYong, Jean W. H., Liya Ge, Yan Fei Ng, and Swee Ngin Tan. 2009. "The Chemical Composition and Biological Properties of Coconut (Cocos nucifera L.) Water" Molecules 14, no. 12: 5144-5164. https://doi.org/10.3390/molecules14125144
APA StyleYong, J. W. H., Ge, L., Ng, Y. F., & Tan, S. N. (2009). The Chemical Composition and Biological Properties of Coconut (Cocos nucifera L.) Water. Molecules, 14(12), 5144-5164. https://doi.org/10.3390/molecules14125144