Protective Effects of Celery Juice in Treatments with Doxorubicin
Abstract
:1. Introduction
2. Results and Discussion
CON | CR | CL | D | CRD | CLD | |
---|---|---|---|---|---|---|
LPx | 0.45±0.06 | 0.40±0,11 | 0.22±0.09a | 0,35±0,06 | 0.37±0.08 | 0.34±0,06 |
XOD | 2,24±0.19 | 4.69±1.31b | 3.35±0.70a | 2.16±0.14 | 4.19±0.80b | 3.34±0.36a |
CAT | 0.71±0.13 | 1.13±0.17a | 0.95±0.08a | 0.74±0.24 | 0.81±0.04 | 0.96±0.09 |
Px | 2.15±0.65 | 4.54±0.61c | 3.34±0.13a | 3.95±0.64a | 2.98±0.38 | 2.87±0.80 |
GSHPx | 4.52±0.99 | 6.86±1.13b | 5.94±0.99a | 3.97±0.57 | 5.72±0.40a | 4.51±0.76 |
GSH | 12.20±1.63 | 19.29±1.02c | 16.42±3.05a | 10.72±1.79 | 9.31±0.86b | 7.92±1.78b |
LPx | CON | CR | CL | CRD | CLD | XOD | CON | CR | CL | CRD | CLD |
---|---|---|---|---|---|---|---|---|---|---|---|
CR | 0.05 − | CR | 2.44 + | ||||||||
CL | 0.23 + | 0.18 + | CL | 1.20 + | 1.24 + | ||||||
CRD | 0.08 + | 0.04 - | 0.15 + | CRD | 1.94 + | 0.50 - | 0.74 + | ||||
CLD | 0.11 + | 0.06 - | 0.12 + | 0.03 - | CLD | 1.09 + | 1.35 + | 0.11 - | 0.85 + | ||
D | 0.10 + | 0.05 - | 0.14 + | 0.01 - | 0.02 - | D | 0.09 - | 2.53 + | 1.29 + | 2.03 + | 1.19 + |
CAT | CON | CR | CL | CRD | CLD | GSHPx | CON | CR | CL | CRD | CLD |
CR | 0.42 + | CR | 2.35 + | ||||||||
CL | 0.11 - | 0.31 + | CL | 1.42 + | 0.93 + | ||||||
CRD | 0.24 + | 0.18 - | 0.14 - | CRD | 1.20 + | 1.15 + | 0.22 − | ||||
CLD | 0.25 + | 0.17 - | 0.14 - | 0.01 - | CLD | 0.01 − | 2.36 + | 1.43 + | 1.21 + | ||
D | 0.04 - | 0.38 + | 0.14 - | 0.21 + | 0.22 + | D | 0.54 − | 2.89 + | 1.96 + | 1.75 + | 0.53 − |
Px | CON | CR | CL | CRD | CLD | GSH | C0N | CR | CL | CRD | CLD |
CR | 2.39 + | CR | 7.09 + | ||||||||
CL | 1.23 + | 1.16 - | CL | 4.22 + | 2.88 + | ||||||
CRD | 0.83 - | 1.56 + | 0.40 - | CRD | 2.88 + | 9.98 + | 7.10 + | ||||
CLD | 0.72 - | 1.67 + | 0.51 - | 0.11 - | CLD | 4.28 + | 11.37 + | 8.50 + | 1.39 + | ||
D | 1.80 + | 0.58 - | 0.58 - | 0.97 - | 1.09 - | D | 1.48 + | 8.58 + | 5.70 + | 1.40 + | 2.80 + |
CON | CR | CL | D | CRD | CLD | |
---|---|---|---|---|---|---|
LPx | 0.27± 0.04 | 0.22 ± 0.01a | 0.18 ± 0.03b | 0.20 ± 0.02 b | 0.21± 0.02a | 0.21± 0.02a |
XOD | 2.66 ± 0.19 | 2.40 ± 0.36 | 2.34 ± 0.25a | 2.27 ± 0.21a | 2.98 ± 0.43 | 2.53 ± 0.37 |
CAT | 2.12 ± 0.22 | 1.73 ± 0.11b | 1.83 ± 0.11b | 1.84 ± 0.12a | 1.79 ± 0.18a | 1.76 ± 0.14 b |
Px | 1.86 ± 0.06 | 1.63 ± 0.16 a | 1.40 ± 0.06c | 1.36 ± 0.13c | 1.59 ± 0.13 b | 1.50 ± 0.24a |
GSHPx | 6.63 ± 0.34 | 6.23 ± 0.44 | 5.51 ± 0.39c | 5.12 ± 0.19c | 5.72 ± 0.72a | 5.82 ± 0.33b |
GSH | 1.47 ± 0.18 | 1.32 ± 0.11 | 1.20 ± 0.15a | 0.87 ± 0.11c | 1.18 ± 0.11a | 1.13 ± 0.16b |
LPx | CON | CR | CL | CRD | CLD | XOD | CON | CR | CL | CRD | CLD |
---|---|---|---|---|---|---|---|---|---|---|---|
CR | 0.04 + | CR | 0.26 + | ||||||||
CL | 0.08 + | 0.04 + | CL | 0.33 + | 0.06 - | ||||||
CRD | 0.06 + | 0.02 - | 0.02 - | CRD | 0.32 + | 0.58 + | 0.65 + | ||||
CLD | 0.05 + | 0.01 - | 0.03 + | 0.01 - | CLD | 0.13 - | 0.13 - | 0.19 - | 0.45 + | ||
D | 0.06 + | 0.02 - | 0.02 - | 0.00 - | 0.01 - | D | 0.39 - | 0.13 - | 0.06 - | 0.71 + | 0.26 + |
CAT | CON | CR | CL | CRD | CLD | GSHPx | CON | CR | CL | CRD | CLD |
CR | 0.39 + | CR | 0.40 + | ||||||||
CL | 0.29+ | 0.10 - | CL | 1.12 + | 0.72 + | ||||||
CRD | 0.33 + | 0.06 - | 0.04 - | CRD | 0.91 + | 0.51 + | 0.21 − | ||||
CLD | 0.36 + | 0.03 - | 0.07 - | 0.03 - | CLD | 0.81 + | 0.41 + | 0.31 + | 0.10 - | ||
D | 0.28 + | 0.11 - | 0.02 - | 0.05 - | 0.08 - | D | 1.50 + | 1.11 + | 0.39 + | 0.59 + | 0.69 + |
Px | CON | CR | CL | CRD | CLD | GSH | C0N | CR | CL | CRD | CLD |
CR | 0.23 + | CR | 0.14 + | ||||||||
CL | 0.46 + | 0.23 + | CL | 0.26 + | 0.12 + | ||||||
CRD | 0.27 + | 0.04 - | 0.19 + | CRD | 0.28 + | 0.14 + | 0.02 - | ||||
CLD | 0.35 + | 0.13 + | 0.10 + | 0.08 - | CLD | 0.34 + | 0.19 + | 0.07 - | 0.05 - | ||
D | 0.50 + | 0.27 + | 0.04 - | 0.22 + | 0.14 + | D | 0.59 + | 0.45 + | 0.33 + | 0.31 + | 0.26 + |
3. Experimental
3.1. General
3.2. Animal treatment
3.3. Biochemical assays
3.4. Chemicals
3.5. Statistical analysis
Acknowledgements
References
- Tokarska-Schlattner, M.; Wallimann, T.; Schlattner, U. Alterations in Myocardial Energy Metabolism Induced by the Anti-Cancer Drug Doxorubicin. C. R. Biol. 2006, 329, 657–668. [Google Scholar] [CrossRef]
- Popovic, M.; Kolarovic, J.; Mikov, M.; Trivic, S.; Kaurinovic, B. Anthracycline-Based Combined Chemotherapy in the Mouse Model. Eur. J. Drug Metab. Pharmacokinet. 2007, 32, 101–108. [Google Scholar] [CrossRef]
- Wattanapitayakul, S.K.; Chularojmontri, L.; Herunsalee, A.; Charuchongkolwongse, S.; Niumsakul, S.; Bauer, J.A. Screening of antioxidants from medicinal plants for cardioprotective effect against doxorubicin toxicity. Basic. Clin. Pharmacol. Toxicol. 2005, 96, 80–87. [Google Scholar] [CrossRef]
- Breitbart, E. Effects of Water-Soluble Antioxidant from Spinach, NAO, on Doxorubicin-Induced Heart Injury. Hum. Exp. Toxicol. 2001, 20, 337–345. [Google Scholar] [CrossRef]
- Liu, T.J.; Yeh, Y.C.; Ting, C.T.; Lee, W.L.; Wang, L.C.; Lee, H.W.; Wang, K.Y.; Lai, H.C. Ginkgo biloba extract 761 reduces doxorubicin-induced apoptotic damage in rat hearts and neonatal cardiomyocytes. Cardiovasc. Res. 2008, 80, 227–235. [Google Scholar] [CrossRef]
- Roderich, E.; Schwarz, C.A.; Donohue, D.S.; Kane, S.E. Pancreatic cancer in vitro toxicity mediated by Chinese herbs SPES and PC-SPES: implications for monotherapy and combination treatment. Cancer Lett. 2003, 189, 59–68. [Google Scholar] [CrossRef]
- Pinmai, K.; Chunlaratthanabhorn, S.; Ngamkitidechakul, C.; Soonthornchareon, N.; Hahnvajanawong, C. Synergistic growth inhibitory effects of Phyllanthus emblica and Terminalia bellerica extracts with conventional cytotoxic agents doxorubicin and cisplatin against human hepatocellular carcinoma and lung cancer cells. World J. Astroenterol. 2008, 14, 1491–1497. [Google Scholar]
- Wittkowsky, A.N. Drug Interactions Update: Drugs, Herbs, and Oral Anticoagulation. J. Thromb. Thrombolysis 2001, 12, 67–71. [Google Scholar] [CrossRef]
- Aquilante, C. Inverse Drug Interaction Prevention: Herbal Remedies and Warfarin: A Dangerous Combination? Drugs Ther. Bull. 2000, 14, 3–10. [Google Scholar]
- Lacy, C.F.; Armstrong, L.L.; Goldman, M.P.; Lance, L.L. Drug Information Handbook, 9th Edition ed; Lexi-Comp. Inc: Cleveland, USA, 2001; pp. 352–353, 716–719. [Google Scholar]
- Available online: http://www.bccancer.bc.ca (accessed on 13 April 2008).
- Wang, E.J.; Barecki-Roach, M.; Johnson, W.W. Quantitative Characterization of Direct P-Glycoprotein Inhibition by St. John's Wort Constituents Hypericin and Hyperforin. J. Pharm. Pharmacol. 2004, 56, 123–128. [Google Scholar] [CrossRef]
- Dresser, G.K.; Schwarz, U.I.; Wilkinson, G.R.; Kim, R.B. Coordinate Induction of Both Cytochrome P4503A and MDR1 by St. John's Wort in Healthy Subjects. Clin. Pharmacol. Ther. 2003, 73, 41–50. [Google Scholar] [CrossRef]
- Izzo, A.A. Drug Interactions with St. John's Wort (Hypericum Perforatum): A Review of the Clinical Evidence. Int. J. Clin. Pharmacol. Ther. 2004, 42, 139–148. [Google Scholar]
- Sadzuka, Y.; Sugiyama, T.; Hirota, S. Modulation of Cancer Chemotherapy by Green Tea. Clin. Cancer Res. 1998, 4, 153–156. [Google Scholar]
- Sadzuka, Y.; Sugiyama, T.; Sonobe, T. Improvement of Idarubicin Induced Antitumor Activity and Bone Marrow Suppression by Theanine, a Component of Tea. Cancer Lett. 2000, 158, 119–124. [Google Scholar] [CrossRef]
- Sugiyama, T.; Sadzuka, Y.; Tanaka, K.; Sonobe, T. Inhibition of Glutamate Transporter by Theanine Enhances the Therapeutic Efficacy of Doxorubicin. Toxicol. Lett. 2001, 121, 89–96. [Google Scholar] [CrossRef]
- Kamath, A.; Wang, L.; Das, H.; Li, L.; Reinhold, V.; Bukowski, J. Antigens in Tea-Beverage Prime Human Vgamma 2Vdelta 2 T Cells in vitro and in vivo for Memory and Nonmemory Antibacterial Cytokine Responses. Proc. Natl. Acad. Sci. 2003, 100, 6009–6014. [Google Scholar] [CrossRef]
- Available online: http://www.plantextra.com/en/, (accessed on 21 October 2008).
- Bakar, O.; Demircay, Z.; Yuksel, M.; Haklar, G.; Sanisoglu, Y. The Effect of Azithromycin on Reactive Oxygen Species in Rosacea. Clin. Exper. Derm. 2007, 32, 197–200. [Google Scholar] [CrossRef]
- Hodek, P.; Trefil, P.; Stiborová, M. Flavonoids-Potent and Versatile Biologically Active Compounds Interacting with Cytochromes P450. Chem. Biol. Interact. 2002, 139, 1–21. [Google Scholar] [CrossRef]
- Lakhanpal, P.; Rai, D.K. Quercetin: A Versatile Flavonoid. Internet J. Med. Update 2007, 2, 20–35. [Google Scholar]
- Silva, B.A.; Ferreres, F.; Malva, J.O.; Dias, A.C.P. Phytochemical and Antioxidant Characterization of Hypericum Perforatum Alcoholic Extracts. Food Chem. 2005, 90, 157–167. [Google Scholar] [CrossRef]
- Ivetić, V.; Popović, M.; Mimica-Dukić, N.; Barak, O.; Pilija, V. St. John±s Wort (Hypericum Perforatum L.) and Kindling Epilepsy in Rabbit. Phytomedicine 2002, 9, 496–499. [Google Scholar] [CrossRef]
- Ćebović, T.; Spasić, S.; Popović, M.; Borota, J.; Leposavić, G. The European Mistletoe (Viscum Album L.) Grown on Plums Extract Inhibits CCl4-Induced Liver Damage in Rats. Fresenius Environ. Bull. 2006, 15, 393–400. [Google Scholar]
- Kaurinović, B.; Popović, M.; Ćebović, T.; Mimica-Dukić, N. Effects of Calendula officinalis L. and Taraxacum opfficinale Weber (Asteraceae) Extracts on the Production of OH• Radicals. Fresenius Environ. Bull. 2003, 12, 250–253. [Google Scholar]
- Jakovljević, V.; Rašković, A.; Popović, M.; Sabo, J. The Effect of Celery and Parsley Juices on Pharmacodynamic Activity of Drugs Involving Cytochrome P450 in Their Metabolism. Eur. J. Drug Metab. Pharmacokinet. 2002, 27, 153–156. [Google Scholar] [CrossRef]
- Bursać, M.; Popović, M.; Mitić, R.; Jakovljević, V.; Kaurinović, B. Antipyretic Effect of Celery (Apium graveolens) Extracts in Mice. Pharm. biol. 2006, 44, 581–584. [Google Scholar] [CrossRef]
- Bursać, M.; Popović, M.; Mitić, R.; Kaurinović, B.; Jakovljević, V. Effects of Parsley (Petroselinum Crispum) and Celery (Apium Graveolens) Extracts on Induction and Sleeping Time at Mice. Pharm. Biol. 2005, 43, 780–783. [Google Scholar] [CrossRef]
- Popović, M.; Kaurinović, B.; Trivić, S.; Mimica-Dukić, N.; Bursać, M. Effect of Celery (Apium graveolens) Extracts on Some Biochemical Parameters of Oxidative Stress in Mice Treated with Carbon Tetrachloride. Phytother. Res. 2006, 20, 531–537. [Google Scholar] [CrossRef]
- Verma, S.K.; Jain, V.; Verma, D.; Khamesra, R. Crataegus Oxyacantha - A Cardioprotective Herb. J. Herbal. Med. Toxicol. 2007, 1, 65–71. [Google Scholar]
- Buege, A.J.; Aust, D.S. Methods in Enzymology; Fleischer, S., Parker , L., Eds.; Academic Press: New York, USA, 1988; p. 306. [Google Scholar]
- Simon, L.M.; Fatrai, Z.; Jonas, D.E.; Matkovics, B. Study of Metabolism Enzymes during the Development of Phaseolus vulgaris. Plant Physiol. Biochem. 1974, 166, 389–393. [Google Scholar]
- Beers, R.F.J.; Sizer, J.W. Spectrophotometric Method for Measuring of Breakdown of Hydrogen Peroxide by Catalase. J. Biol. Chem. 1950, 195, 133–140. [Google Scholar]
- Chin, P.T.Y.; Stults, F.H.; Tappel, A.L. Purification of Rat Lung Soluble Glutathione Peroxidase. Biochem. Biophys. Acta 1976, 445, 558–660. [Google Scholar]
- Bergmayer, U.H. Methoden Der Enzymatischen Analyse; Verlag Chemies: Weinhem, Germany, 1970; pp. 483–484. [Google Scholar]
- Beuthler, E.; Duron, O.; Kelly, B. Improved Methods for the Determination of Blood Glutathione. J. Lab. Clin. Med. 1983, 61, 882–889. [Google Scholar]
- Kapetanović, I.M.; Mieyal, I.I. Inhibition of Acetaminophen Induced Hepatotoxicity by Phenacetin and Its Alkoxy Analogs. J. Pharmacol. Exp. Ther. 1979, 209, 25–30. [Google Scholar]
- Gornall, H.G.; Nardwall, C.L. Estimation of Total Protein in Tissue Homogenate. J. Biol. Chem. 1949, 177, 751–756. [Google Scholar]
- Sample Availability: Samples of the compounds are available from the authors.
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Kolarovic, J.; Popovic, M.; Mikov, M.; Mitic, R.; Gvozdenovic, L. Protective Effects of Celery Juice in Treatments with Doxorubicin. Molecules 2009, 14, 1627-1638. https://doi.org/10.3390/molecules14041627
Kolarovic J, Popovic M, Mikov M, Mitic R, Gvozdenovic L. Protective Effects of Celery Juice in Treatments with Doxorubicin. Molecules. 2009; 14(4):1627-1638. https://doi.org/10.3390/molecules14041627
Chicago/Turabian StyleKolarovic, Jovanka, Mira Popovic, Momir Mikov, Radoslav Mitic, and Ljiljana Gvozdenovic. 2009. "Protective Effects of Celery Juice in Treatments with Doxorubicin" Molecules 14, no. 4: 1627-1638. https://doi.org/10.3390/molecules14041627
APA StyleKolarovic, J., Popovic, M., Mikov, M., Mitic, R., & Gvozdenovic, L. (2009). Protective Effects of Celery Juice in Treatments with Doxorubicin. Molecules, 14(4), 1627-1638. https://doi.org/10.3390/molecules14041627