Ruthenium(III) Chloride Catalyzed Acylation of Alcohols, Phenols, and Thiols in Room Temperature Ionic Liquids
Abstract
:Introduction
Results and Discussion
Entry | Substrate | Time | Product | Yield (%)b |
---|---|---|---|---|
1 | PhCH2OH | 10 min | 3a | 92 |
2 | 1.5 h | 3b | 91 | |
3 | 10 min | 3c | 90 | |
4 | 30 min | 3d | 93 | |
5 | 3 h | 3e | 87 | |
6 | 2 h | 3f | 89 | |
7 | 2 h | 3g | 98 | |
8 | 1.8 h | 3h | 92 | |
9 | 2 h | 3i | 90 | |
10 | 2 h | 3j | 95 | |
11 | 2.5 h | 3k | 88 | |
12 | 3 h | 3l | 90 | |
13 | 3 h | 3m | 90 | |
14 | 2.5 h | 3n | 93 | |
15 | 2 h | 3o | 98 | |
16 | PhSH | 1 h | 3p | 95 |
17 | n-BuSH | 35 min | 3q | 91 |
18 | 4-ClC6H4SH | 1.5 h | 3r | 90 |
19 | 4-CH3C6H4SH | 2 h | 3s | 92 |
Cycle | Yield (%)b | Cycle | Yield (%)b |
---|---|---|---|
1 | 92 | 6 | 90 |
2 | 91 | 7 | 91 |
3 | 92 | 8 | 90 |
4 | 90 | 9 | 89 |
5 | 91 | 10 | 89 |
Experimental
General
Typical procedure for the acetylation of benzyl alcohol in ionic liquids
Conclusions
Acknowledgements
- Sample Availability: Samples of the compounds 3a-s are available from the authors.
References and Notes
- Anastas, P.T.; Kirchhoff, M.M. Origins, current status, and future challenges of green chemistry. Acc. Chem. Res. 2002, 35, 686–694. [Google Scholar] [CrossRef]
- Trost, B.M. On inventing reactions for atom economy. Acc. Chem. Res. 2002, 35, 695–705. [Google Scholar] [CrossRef]
- Wulff, G. Enzyme-like catalysis by molecularly imprinted polymers. Chem. Rev. 2002, 102, 1–28. [Google Scholar] [CrossRef]
- Bergbreiter, D.E. Using soluble polymers to recover catalysts and ligands. Chem. Rev. 2002, 102, 3345–3384. [Google Scholar] [CrossRef]
- Welton, T. Room-temperature ionic liquids. solvents for synthesis and catalysis. Chem. Rev. 1999, 99, 2071–2084. [Google Scholar] [CrossRef]
- Larsen, A.S.; Holbrey, J.D.; Tham, F.S.; Reed, C.A. Designing ionic liquids: Imidazolium melts with inert carborane anions. J. Am. Chem. Soc. 2000, 122, 7264–7272. [Google Scholar]
- Song, C.E. Enantioselective chemo- and bio-catalysis in ionic liquids. Chem. Commun. 2004, 1033–1043. [Google Scholar] [CrossRef]
- Wu, W.Z.; Han, B.X.; Gao, H.X.; Liu, Z.M.; Jiang, T.; Huang, J. Desulfurization of flue gas: SO2 absorption by an ionic liquid. Angew. Chem. Int. Ed. 2004, 43, 2415–2417. [Google Scholar] [CrossRef]
- Dupont, J.; de Souza, R.F.; Suarez, P.A.Z. Ionic liquid (Molten Salt) phase organometallic catalysis. Chem. Rev. 2002, 102, 3667–3692. [Google Scholar] [CrossRef]
- Parvulescu, V.I.; Hardacre, C. Catalysis in ionic liquids. Chem. Rev. 2007, 107, 2615–2665. [Google Scholar] [CrossRef]
- Dyson, P.J.; Ellis, D.J.; Parker, D.G.; Welton, T. Arene hydrogenation in a room-temperature ionic liquid using a ruthenium cluster catalyst. Chem. Commun. 1999, 25–26. [Google Scholar]
- Ellis, B.; Keim, W.; Wasserscheid, P. Linear dimerisation of But-1-ene in biphasic mode using buffered chloroaluminate ionic liquid solvents. Chem. Commun. 1999, 337–338. [Google Scholar]
- Adams, C.J.; Earle, M.J.; Roberts, G.; Seddon, K.R. Friedel-crafts reactions in room temperature ionic liquids. Chem. Commun. 1998, 2097–2098. [Google Scholar]
- Stark, A.; Maclean, B.L.; Singer, R.D. 1-Ethyl-3-methylimidazolium halogenoaluminate ionic liquids as solvents for Friedel-crafts acylation reactions of ferrocene. J. Chem. Soc. Dalton Trans. 1999, 63–66. [Google Scholar] [CrossRef]
- Fischer, T.; Sethi, A.; Welton, T.; Woolf, J. Diels-Alder reactions in room-temperature ionic liquids. Tetrahedron Lett. 1999, 40, 793–796. [Google Scholar] [CrossRef]
- Lee, C.W. Diels-alder reactions in chloroaluminate ionic liquids: Acceleration and selectivity enhancement. Tetrahedron Lett. 1999, 40, 2461–2464. [Google Scholar] [CrossRef]
- Lusley, P.; Karodia, N. Phosphonium tosylates as solvents for the Diels-Alder reaction. Tetrahedron Lett. 2001, 42, 2011–2014. [Google Scholar] [CrossRef]
- Jeffery, T. Heck-type reactions in water. Tetrahedron Lett. 1994, 35, 3051–3054. [Google Scholar] [CrossRef]
- Calo, V.; Nacci, A.; Lopez, L.; Napola, A. Arylation of α-substituted acrylates in ionic liquids catalyzed by a Pd-benzothiazole carbene complex. Tetrahedron Lett. 2001, 42, 4701–4703. [Google Scholar]
- Carmichael, A.J.; Earle, M.J.; Holbrey, J.D.; McCormac, P.B.; Seddon, K.R. The heck reaction in ionic liquids: A multiphasic catalyst system. Org. Lett. 1999, 1, 997–1000. [Google Scholar] [CrossRef]
- Rex, X.R.; Larisa, D.Z.; Wei, O. Formation of ε-caprolactam via catalytic beckmann rearrangement using P2O5 in ionic liquids. Tetrahedron Lett. 2001, 42, 8441–8443. [Google Scholar]
- Peng, J.J.; Deng, Y.Q. Catalytic beckmann rearrangement of ketoximes in ionic liquids. Tetrahedron Lett. 2001, 42, 403–405. [Google Scholar] [CrossRef]
- Mathews, C.J.; Smith, P.J.; Welton, T. Palladium catalysed suzuki cross-coupling reactions in ambient temperature ionic liquids. Chem. Commun. 2000, 1249–1250. [Google Scholar]
- Xiao, J.C.; Twamley, B.; Shreeve, J.M. An ionic liquid-coordinated palladium complex: A highly efficient and recyclable catalyst for the Heck reaction. Org. Lett. 2004, 6, 3845–3847. [Google Scholar] [CrossRef]
- Jin, C.M.; Twamley, B.; Shreeve, J.M. Low-melting dialkyl- and Bis(polyfluoroalkyl)-substituted 1,1’-methylenebis(imidazolium) and 1,1’-methylenebis(1,2,4-triazolium) bis(trifluoromethane-sulfonyl)amides: Ionic liquids leading to bis(N-heterocyclic carbene) complexes of palladium. Organometallics 2005, 24, 3020–3023. [Google Scholar] [CrossRef]
- Wang, R.; Twamley, B.; Shreeve, J.M. A highly efficient, recyclable catalyst for C−C coupling reactions in ionic liquids: Pyrazolyl-functionalized N-heterocyclic carbene complex of palladium(II). J. Org. Chem. 2006, 71, 426–429. [Google Scholar] [CrossRef]
- Hsu, J.C.; Yen, Y.H.; Chu, Y.H. Baylis-Hillman reaction in [bdmim][PF6] ionic liquid. Tetrahedron Lett. 2004, 45, 4673–4676. [Google Scholar] [CrossRef]
- Machado, M.Y.; Dorta, R. Synthesis and characterization of chiral imidazolium salts. Synthesis 2005, 2473–2475. [Google Scholar]
- Handy, S.T.; Zhang, X. Organic synthesis in ionic liquids: The stille coupling. Org. Lett. 2001, 3, 233–236. [Google Scholar] [CrossRef]
- Fukuyama, T.; Shinmen, M.; Nishitani, S.; Sato, M.; Ryu, I. A copper-free sonogashira coupling reaction in ionic liquids and its application to a microflow system for efficient Catalyst recycling. Org. Lett. 2002, 4, 1691–1694. [Google Scholar] [CrossRef]
- Greene, T.W.; Wuts, P.G.M. Protective Groups in Organic Synthesis,3rd ed.; Wiley: New York, NY, USA, 1999; p. 150. [Google Scholar]
- Vedejs, E.; Diver, S.T. Tributylphosphine: A remarkable acylation catalyst. J. Am. Chem. Soc. 1993, 115, 3358–3359. [Google Scholar] [CrossRef]
- Ishihara, K.; Kubota, M.; Kurihara, H.; Yamamoto, H. Scandium trifluoromethanesulfonate as an extremely active acylation catalyst. J. Am. Chem. Soc. 1995, 117, 4413–4414. [Google Scholar] [CrossRef]
- Ishihara, K.; Kubota, M.; Kurihara, H.; Yamamoto, H. Scandium trifluoromethanesulfonate as an extremely active lewis acid catalyst in acylation of alcohols with acid anhydrides and mixed anhydrides. J. Org. Chem. 1996, 61, 4560–4567. [Google Scholar] [CrossRef]
- Ishihara, K.; Kubota, M.; Yamamoto, H. A new scandium complex as an extremely active acylation catalyst. Synlett 1996, 265–266. [Google Scholar] [CrossRef]
- Procopiou, P.A.; Baugh, S.P.D.; Flack, S.S.; Inglis, G.G.A. An extremely powerful acylation reaction of alcohols with acid anhydrides catalyzed by trimethylsilyl trifluoromethane-sulfonate. J. Org. Chem. 1998, 63, 2342–2347. [Google Scholar] [CrossRef]
- Procopiou, P.A.; Baugh, S.P.D.; Flack, S.S.; Inglis, G.G.A. An extremely fast and efficient acylation reaction of alcohols with acid anhydrides in the presence of trimethylsilyl trifluoromethanesulfonate as catalyst. Chem. Commun. 1996, 2625–2626. [Google Scholar]
- Chandra, K.L.; Saravanan, P.; Singh, R.K.; Sing, V.K. Lewis acid catalyzed acylation reactions: Scope and Limitations. Tetrahedron 2002, 58, 1369–1374. [Google Scholar] [CrossRef]
- Chakroborty, A.; Gulhane, R. Indium(III) chloride as a new, highly efficient, and versatile catalyst for acylation of phenols, thiols, alcohols, and amines. Tetrahedron Lett. 2003, 44, 6749–6753. [Google Scholar] [CrossRef]
- Chauhan, K.K.; Frost, C.G.; Love, I.; Waite, D. Indium Triflate: An efficient catalyst for acylation reactions. Synlett 1999, 1743–1744. [Google Scholar] [CrossRef]
- Orita, A.; Tanahashi, C.; Kakuda, A.; Otera, J. Highly efficient and versatile acylation of alcohols with Bi(OTf)3 as catalyst. Angew. Chem. Int. Ed. 2000, 39, 2877–2879. [Google Scholar] [CrossRef]
- Orita, A.; Tanahashi, C.; Kakuda, A.; Otera, J. Highly powerful and practical acylation of alcohols with acid anhydride catalyzed by Bi(OTf)3. J. Org. Chem. 2001, 66, 8926–8934. [Google Scholar] [CrossRef]
- Li, A.X.; Li, T.S.; Ding, T.H. Montmorillonite K-10 and KSF as remarkable acetylation catalysts. Chem. Commun. 1997, 1389–1390. [Google Scholar]
- Kanta De, S. Ruthenium(III) chloride catalyzed acylation of alcohols, phenols, thiols, and amines. Tetrahedron Lett. 2004, 45, 2919–2922. [Google Scholar] [CrossRef]
- Rozen, S.; Zamir, D. A novel aromatic iodination method using fluorine. J. Org. Chem. 1990, 55, 3552–3555. [Google Scholar] [CrossRef]
- Jin, T.S.; Ma, Y.R.; Zhang, Z.H.; Li, T.S. Sulfamic acid catalysed acetylation of alcohols and phenols with acetic anhydride. Synth. Commun. 1998, 28, 3173–3177. [Google Scholar] [CrossRef]
- Geppert, J.T.; Johnson, M.W.; Myhre, P.C.; Woods, S.P. Ipso nitration. Solvolytic behavior of 1,4-dimethyl-4-nitrocyclohexadienyl acetate and 1,4- dimethyl-4-nitrocyclohexadienol. J. Am. Chem. Soc. 1981, 103, 2057–2062. [Google Scholar]
- Anderson, W.K.; DeRuiter, J.; Heider, A.R. Vinylogous carbinolamine tumor inhibitors. 14. 1,3-dipolar cycloaddition reactions with tetrafluoroborate and trifluoromethanesulfonate salts of 1,2-dihydro- and 1,2,3,4-tetrahydroquinoline reissert compounds. J. Org. Chem. 1985, 50, 722–724. [Google Scholar] [CrossRef]
- Chakraborti, A.K.; Gulhae, R. Perchloric acid adsorbed on silica gel as a new, highly efficient, and versatile catalyst for acetylation of phenols, thiols, alcohols, and am. Chem. Commun. 2003, 1896–1897. [CrossRef]
- Ueno, Y.; Nozomi, M.; Okawara, M. Direct synthesis of protected thiols by tributylstannyl group. Chem. Lett. 1982, 1199–1202. [Google Scholar] [CrossRef]
- Douglas, K.T.; Yaggi, N.F.; Mervis, C.M. Leaving group effects in thiolester hydrolysis. Part 2. On the possibility of an elimination-addition (Keten) mediated pathway in S-acetylcoenzyme a basic hydrolysis and acetyl transfer. J. Chem. Soc. Perkin Trans. 1981, 171–174. [Google Scholar]
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Xi, Z.; Hao, W.; Wang, P.; Cai, M. Ruthenium(III) Chloride Catalyzed Acylation of Alcohols, Phenols, and Thiols in Room Temperature Ionic Liquids. Molecules 2009, 14, 3528-3537. https://doi.org/10.3390/molecules14093528
Xi Z, Hao W, Wang P, Cai M. Ruthenium(III) Chloride Catalyzed Acylation of Alcohols, Phenols, and Thiols in Room Temperature Ionic Liquids. Molecules. 2009; 14(9):3528-3537. https://doi.org/10.3390/molecules14093528
Chicago/Turabian StyleXi, Zhiwen, Wenyan Hao, Pingping Wang, and Mingzhong Cai. 2009. "Ruthenium(III) Chloride Catalyzed Acylation of Alcohols, Phenols, and Thiols in Room Temperature Ionic Liquids" Molecules 14, no. 9: 3528-3537. https://doi.org/10.3390/molecules14093528
APA StyleXi, Z., Hao, W., Wang, P., & Cai, M. (2009). Ruthenium(III) Chloride Catalyzed Acylation of Alcohols, Phenols, and Thiols in Room Temperature Ionic Liquids. Molecules, 14(9), 3528-3537. https://doi.org/10.3390/molecules14093528