Investigating the Activity Spectrum for Ring-Substituted 8-Hydroxyquinolines
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Lipophilicity
Comp. | R | log k | log P/Clog P | log P |
ChemOffice | ACD/LogP | |||
1 | 5-NO2 | 0.5695 | 1.69 / 2.0836 | 2.00 ± 0.32 |
2 | 5-SO3H-7-NO2 | 0.1479 | 0.37 / -0.703 | 1.70 ± 0.88 |
3 | 5-SO3H-7-Br | 0.3786 | 1.72 / -0.004 | 2.39 ± 0.91 |
4 | 0.3293 | 0.61 / 1.43775 | 1.19 ± 0.81 | |
5 | 5-SO2NHCH(CH3)2 | 0.3373 | 2.17 / 2.5697 | 1.97 ± 0.78 |
6 | 5-SO2NHC2H4Ph | 0.3349 | 3.17 / 3.83597 | 3.29 ± 0.79 |
7 | 5-SO2NHC4H8Ph | 0.3902 | 4.09 / 4.74397 | 4.18 ± 0.78 |
8 | 0.3583 | 1.33 / 0.93375 | 0.52 ± 0.73 | |
Comp. | R | log k | log P/Clog P | log P |
ChemOffice | ACD/LogP | |||
9 | 2-OH | 1.5854 | 5.07 / 5.36425 | 5.62 ± 0.35 |
10 | 4-OH | 1.5866 | 5.07 / 5.36425 | 6.37 ± 0.36 |
11 | 2,4-OH | 1.5858 | 4.68 / 4.69725 | 5.65 ± 0.37 |
12 | 3,5-OH | 1.5867 | 4.68 / 4.69725 | 6.20 ± 0.37 |
13 | 2-OH-5-OAc | 1.5864 | 4.66 / 4.89345 | 4.87 ± 0.36 |
14 | 2.5760 | 8.88 / 9.92051 | 10.50 ± 0.39 |
2.3. Biological activities
Comp. | PET reductionIC50 [μmol/L] | MIC [µmol/L] | |||||||
CAa | CTa | CKa | CGa | TBa | AFb | ACb | TMb | ||
24h | 24h | 24h | 24h | 24h | 24h | 24h | 72h | ||
48h | 48h | 48h | 48h | 48h | 48h | 48h | 120h | ||
1 | 78.0 | >500 | >500 | >500 | >500 | >500 | >500 | >500 | >500 |
>500 | >500 | >500 | >500 | >500 | >500 | >500 | >500 | ||
2 | ND | >250 | >250 | >250 | >250 | >250 | >250 | >250 | >250 |
>250 | >250 | >250 | >250 | >250 | >250 | >250 | >250 | ||
3 | 33.5 | 0.77 | 1.95 | 3.90 | 1.95 | 3.90 | 0.77 | 7.80 | 1.95 |
1.95 | 3.90 | 3.90 | 3.90 | 3.90 | 1.95 | 7.80 | 1.95 | ||
4 | ND | 125 | 500 | 250 | 500 | 500 | 500 | 125 | 250 |
500 | 500 | 500 | 500 | 500 | 500 | 250 | 250 | ||
5 | 54.4 | 125 | 250 | 250 | 125 | 250 | 250 | 125 | 62.50 |
250 | 250 | 250 | 250 | 500 | 250 | 125 | 125 | ||
6 | 304 | 125 | 125 | 125 | 125 | 125 | 125 | 125 | 125 |
125 | 125 | 125 | 125 | 125 | 125 | 125 | 125 | ||
7 | 616 | >125 | >125 | >125 | >125 | >125 | >125 | >125 | >125 |
>125 | >125 | >125 | >125 | >125 | >125 | >125 | >125 | ||
8 | 306 | 15.60 | 31.25 | 62.50 | 31.25 | 62.50 | 62.50 | 62.50 | 62.50 |
62.50 | 31.25 | 62.50 | 62.50 | 125 | 62.50 | 62.50 | 62.50 | ||
9 | ND | >125 | >125 | >125 | >125 | >125 | 125 | 62.50 | 62.50 |
>125 | >125 | >125 | >125 | >125 | 125 | 125 | 62.50 | ||
10 | 660 | 125 | 125 | 125 | 125 | 125 | 125 | 31.25 | 15.62 |
>125 | >125 | >125 | >125 | >125 | 125 | 62.50 | 62.50 | ||
12 | 341 | >125 | >125 | >125 | >125 | >125 | 125 | 62.50 | 15.62 |
>125 | >125 | >125 | >125 | >125 | 125 | 62.50 | 15.62 | ||
14 | 334 | 0.98 | 1.95 | 0.98 | 0.49 | 3.90 | 3.90 | 15.62 | 3.90 |
3.90 | 7.81 | 1.95 | 1.95 | 15.62 | 15.62 | 31.25 | 7.81 | ||
DCMU | 1.9 | – | – | – | – | – | – | – | – |
FLU | – | 0.06 | 0.12 | 3.91 | 0.98 | 0.24 | >125 | >125 | 1.95 |
0.12 | >125 | 15.62 | 3.91 | 0.48 | >125 | >125 | 3.91 |
2.3.1. Inhibition of photosynthetic electron transport (PET) in spinach chloroplasts
2.3.2. In vitro antifungal susceptibility testing
2.3.3. In vitro antimycobacterial evaluation
Comp. | MIC/IC90 [µg/mL] | |||
M. smegmatis | M. absessus | M. kansasii | M. avium complex | |
9 | 100 | >300 | >300 | >300 |
10 | 150 | >300 | >300 | >300 |
11 | 100 | >100 | >100 | >100 |
12 | >100 | >300 | >300 | >300 |
13 | 100 | >300 | >300 | >300 |
14 | 40 | 130 | 40 | >300 |
PZA | >100 | >100 | >100 | >100 |
INH | 39 | >100 | <10 | <10 |
3. Conclusions
4. Experimental
4.1. General
4.2. Synthesis
4.2.1. General method for synthesis of compounds 9-14.
4.3. Lipophilicity determination by HPLC (capacity factor k/calculated log k)
4.4. Lipophilicity calculations
4.5. In vitro antifungal susceptibility testing
4.6. Study of inhibition photosynthetic electron transport (PET) in spinach chloroplasts
4.7. In vitro antimycobacterial evaluation
Acknowledgements
References
- Roth, H.J.; Fenner, H. Arzneistoffe, 3rd ed; Deutscher Apotheker Verlag: Stuttgart, Germany, 2000; pp. 51–114. [Google Scholar]
- Harris, C.R.; Thorarensen, A. Advances in the discovery of novel antibacterial agents during the year 2002. Curr. Med. Chem. 2004, 11, 2213–2243. [Google Scholar] [CrossRef]
- Andries, K.; Verhasselt, P.; Guillemont, J.; Gohlmann, H.W.; Neefs, J.M.; Winkler, H.; van Gestel, J.; Timmerman, P.; Zhu, M.; Lee, E.; Williams, P.; de Chaffoy, D.; Huitric, E.; Hoffner, S.; Cambau, E.; Truffot-Pernot, C.; Lounis, N.; Jarlier, V. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 2005, 307, 223–227. [Google Scholar]
- Vangapandu, S.; Jain, M.; Jain, R.; Kaur, S.; Singh, P.P. Ring-substituted quinolines as potential anti-tuberculosis agents. Bioorg. Med. Chem. 2004, 12, 2501–2508. [Google Scholar] [CrossRef]
- Carta, A.; Piras, S.; Palomba, M.; Jabes, D.; Molicotti, P.; Zanetti, S. Anti-mycobacterial activity of quinolones. Triazoloquinolones a new class of potent anti-mycobacterial agents. Anti-Infective Agents Med. Chem. 2008, 7, 134–147. [Google Scholar] [CrossRef]
- Sissi, C.; Palumbo, M. The quinolone family: From antibacterial to anticancer agents. Curr. Med. Chem. Anti-Canc. Agents 2003, 3, 439–450. [Google Scholar] [CrossRef]
- Bossu, E.; Agliano, A.M.; Desideri, N.; Sestili, I.; Porra, R.; Grandilone, M.; Quaglia, M.G. LTB4 as marker of 5-LO inhibitory activity of two new N-ethoxycarbonyl-4-quinolones. J. Pharm. Biomed. Anal. 1999, 19, 539–549. [Google Scholar] [CrossRef]
- Ko, T.C.; Hour, M.J.; Lien, J.C.; Teng, C.M.; Lee, K.H.; Kuo, S.C.; Huang, L.J. Synthesis of 4-alkoxy-2-phenylquinoline derivatives as potent antiplatelet agents. Bioorg. Med. Chem. Lett. 2001, 11, 279–282. [Google Scholar] [CrossRef]
- Jampilek, J.; Dolezal, M.; Kunes, J.; Vichova, P.; Jun, D.; Raich, I.; O´Connor, R.; Clynes, M. Synthesis of (2E)-2-methyl-3-(4-{[4-(quinolin-2-ylmethoxy)phenyl]sulfanyl}phenyl)prop-2-enoic acid (VUFB 20609) and 2-methyl-3-(4-{[4-(quinolin-2-ylmethoxy)phenyl]sulfanyl}phenyl)propionic acid (VUFB 20584) as potential antileukotrienic agents. J. Pharm. Pharmacol. 2004, 56, 783–794. [Google Scholar]
- Jampilek, J.; Dolezal, M.; Kunes, J.; Vichova, P.; Jun, D.; Raich, I.; O´Connor, R.; Clynes, M. Preparation of 2-(4-{[4-(quinolin-2-ylmethoxy)phenyl]sulfanyl}phenyl)propionic acid (VUFB 20615) and 2-methyl-2-(4-{[4-(quinolin-2-ylmethoxy)phenyl]sulfanyl}phenyl)propionic acid (VUFB 20623) as potential antileukotrienic agents. Curr. Org. Chem. 2004, 8, 1235–1243. [Google Scholar] [CrossRef]
- Jampilek, J.; Dolezal, M.; Opletalova, V.; Hart, J. 5-Lipoxygenase, leukotrienes biosynthesis and potential antileukotrienic agents. Curr. Med. Chem. 2006, 13, 117–126. [Google Scholar] [CrossRef]
- Polanski, J.; Zouhiri, F.; Jeanson, L.; Desmaele, D.; d’Angelo, J.; Mouscadet, J.F.; Gieleciak, R.; Gasteiger, J.; Le Bret, M. Use of the Kohonen neural network for rapid screening of ex vivo anti-HIV activity of styrylquinolines. J. Med. Chem. 2002, 45, 4647–4654. [Google Scholar] [CrossRef]
- Polanski, J.; Niedbala, H.; Musiol, R.; Tabak, D.; Podeszwa, B.; Gieleciak, R.; Bak, A.; Palka, A.; Magdziarz, T. Analogues of styrylquinoline and styrylquinazoline HIV-1 integrase inhibitors: Design and synthetic problems. ActaPoloniae Pharm. Drug Res. 2004, 61, 3–4. [Google Scholar]
- Polanski, J.; Niedbala, H.; Musiol, R.; Podeszwa, B.; Tabak, D.; Palka, A.; Mencel, A.; Finster, J.; Mouscadet, J.F.; Le Bret, M. 5-Hydroxy-8-nitro-6-quinaldic acid as a novel molecular scaffold for HIV-1 integrase inhibitors. Lett. Drugs Des. Disc. 2006, 3, 175–178. [Google Scholar] [CrossRef]
- Polanski, J.; Niedbala, H.; Musiol, R.; Podeszwa, B.; Tabak, D.; Palka, A.; Mencel, A.; Mouscadet, J.F.; Le Bret, M. Fragment based approach for the investigation of HIV-1 integrase inhibition. Lett. Drugs Des. Disc. 2007, 4, 99–105. [Google Scholar]
- Vargas, L.Y.; Castelli, M.V.; Kouznetsov, V.V.; Urbina, J.M.; Lopez, S.N.; Sortino, M.; Enriz, R.D.; Ribas, J.C.; Zacchino, S. In vitro antifungal activity of new series of homoallylamines and related compounds with inhibitory properties of the synthesis of fungal cell wall polymers. Bioorg. Med. Chem. 2003, 11, 1531–1550. [Google Scholar]
- Jampilek, J.; Dolezal, M.; Kunes, J.; Buchta, V.; Kralova, K. Quinaldine Derivatives: Preparation and Biological Activity. Med. Chem. 2005, 1, 591–599. [Google Scholar] [CrossRef]
- Musiol, R.; Jampilek, J.; Buchta, V.; Niedbala, H.; Podeszwa, B.; Palka, A.; Majerz-Maniecka, K.; Oleksyn, B.; Polanski, J. Antifungal properties of new series of quinoline derivatives. Bioorg. Med. Chem. 2006, 14, 3592–3598. [Google Scholar]
- Musiol, R.; Jampilek, J.; Kralova, K.; Richardson, D.R.; Kalinowski, D.; Podeszwa, B.; Finster, J.; Niedbala, H.; Palka, A.; Polanski, J. Investigating biological activity spectrum fornovel quinoline analogues. Bioorg. Med. Chem. 2007, 15, 1280–1288. [Google Scholar]
- Musiol, R.; Tabak, D.; Niedbala, H.; Podeszwa, B.; Jampilek, J.; Kralova, K.; Dohnal, J.; Finster, J.; Mencel, A.; Polanski, J. Investigating biological activity spectrum for novel quinoline analogues 2: Hydroxyquinolinecarboxamides with photosynthesis inhibiting activity. Bioorg. Med. Chem. 2008, 16, 4490–4499. [Google Scholar] [CrossRef]
- Jampilek, J.; Musiol, R.; Pesko, M.; Kralova, K.; Vejsova, M.; Carroll, J.; Coffey, A.; Finster, J.; Tabak, D.; Niedbala, H.; Kozik, V.; Polanski, J.; Csollei, J.; Dohnal, J. Ring-substituted 4-hydroxy-1H-quinolin-2-ones: Preparation and biological activity. Molecules 2009, 14, 1145–1159. [Google Scholar]
- Jampilek, J.; Musiol, R.; Finster, J.; Pesko, M.; Carroll, J.; Kralova, K.; Vejsova, M.; O'Mahony, J.; Coffey, A.; Dohnal, J.; Polanski, J. Investigating biological activity spectrum for novel styrylquinazoline analogues. Molecules 2009, 14, 4246–4265. [Google Scholar]
- Podeszwa, B.; Niedbala, H.; Polanski, J.; Musiol, R.; Tabak, D.; Finster, J.; Serafin, K.; Wietrzyk, J.; Boryczka, S.; Mol, W.; Jampilek, J.; Dohnal, J.; Kalinowski, D.; Richardson, D.R. Investigating the antiproliferative activity of quinoline-5,8-dione analogues on tumour cell lines. Bioorg.Med. Chem. Lett. 2007, 17, 6138–6141. [Google Scholar]
- Global Tuberculosis Control – Surveillance, Planning, Financing. WHO Report 2008. Available online: http://www.who.int/tb/publications/global_report/2008/summary/en/index.html/ accessed on 28 October 2009.
- Field, S.K.; Cowie, R.L. Lung disease due to the more common nontuberculous mycobacteria. Chest 2006, 129, 1653–1672. [Google Scholar]
- Wagner, D.; Young, L.S. Nontuberculous mycobacterial infections: A clinical review. Infection 2004, 32, 257–270. [Google Scholar] [CrossRef]
- Morrone, N.; Cruvinel, M.C.; Morrone, N., Jr.; Freire, J.A.; Oliveira, L.M.; Goncalves, C. Pneumopatia causada por Mycobacterium kansasii. J. Pneumol. 2003, 29, 341–349. [Google Scholar] [CrossRef]
- Doctor Fungus. Available online: http://www.doctorfungus.org/ accessed on 28 October 2009.
- Gershon, H.; Gershon, M.; Clarke, D.D. Synergistic mixtures of fungitoxicmonochloro- and dichloro-8-quinolinols against five fungi. Mycopathologia 2004, 158, 131–135. [Google Scholar]
- Dardari, Z.; Lemrani, M.; Bahloul, A.; Sebban, A.; Hassar, M.; Kitane, S.; Berrada, M.; Boudouma, M. Antileishmanial activity of a new 8-hydroxyquinoline derivative designed 7-[5′-(3′-phenylisoxazolino)methyl]-8-hydroxyquinoline: Preliminary study. Farmaco 2004, 59, 195–199. [Google Scholar] [CrossRef]
- Draber, W.; Tietjen, K.; Kluth, J.F.; Trebst, A. Herbicides in photosynthesis research. Angew. Chem. Int. Ed. Engl. 1991, 3, 1621–1633. [Google Scholar]
- Tischer, W.; Strotmann, H. Relationship between inhibitor binding by chloroplasts and inhibition of photosynthetic electron transport. Biochim. Biophys. Acta 1977, 460, 113–125. [Google Scholar] [CrossRef]
- Trebst, A.; Draber, W. Structure activity correlations of recent hrbicides in photosynthetic reactions. In Advances in Pesticide Science; Greissbuehler, H., Ed.; Pergamon Press: Oxford, UK, 1979; pp. 223–234. [Google Scholar]
- Bowyer, J.R.; Camilleri, P.; Vermaas, W.F.J. Herbicides, Topics in Photosynthesis; Baker, N.R., Percival, M.P., Eds.; Elsevier: Amsterdam, The Netherlands, 1991; Volume 10, pp. 27–85. [Google Scholar]
- Kralova, K.; Sersen, F.; Kubicova, L.; Waisser, K. Inhibition of photosynthetic electron transport in spinach chloroplasts by 3-and 4-halogeno substituted benzanilides and thiobenzanilides. J. Trace Microprobe Techn. 2000, 18, 251–256. [Google Scholar]
- Kralova, K.; Sersen, F.; Miletín, M.; Dolezal, M. Inhibitory effects of substituted benzanilides on photosynthetic electron transport in spinach chloroplasts. Chem. Pap. 2002, 56, 214–217. [Google Scholar]
- Dolezal, M.; Palek, L.; Vinsova, J.; Buchta, V.; Jampilek, J.; Kralova, K. Substituted pyrazinecarboxamides: Synthesis and biological evaluation. Molecules 2006, 11, 242–256. [Google Scholar] [CrossRef]
- Kerns, E.H.; Li, D. Drug-Like Properties: Concept, Structure Design and Methods; Elsevier: San Diego, CA, USA, 2008. [Google Scholar]
- Honda, I.; Yoneyama, K.; Iwamura, H.; Konnai, M.; Takahashi, N.; Yoshida, S. Structure-activity relationship of 3-nitro-2,4,6-tri-hydroxybenzamide derivatives in photosynthetic electron transport inhibition. Agric. Biol. Chem. 1990, 54, 1227–1233. [Google Scholar]
- Messinger, P.; Meyer, H. The reaction of iodohydroxyquinolinesulfonic acid with nitrite. Arch. Pharm. 1976, 309, 1009–1010. [Google Scholar] [CrossRef]
- Ponikiewski, L.; Nycz, J.E. 3-[(E)-2-(5,7-Dichloro-8-hydroxyquinolin-2-yl)vinyl]-4-hydroxyphenyl acetate. ActaCryst. E 2009, 65, 515. [Google Scholar]
- Nycz, J.E.; Ponikiewski, L. Unpublished data, 2009. Detailed analysis of the structure of these compounds will be published elsewhere.
- Sheehan, D.J.; Espinel-Ingroff, A.; Steele, M.; Webb, C.D. Antifungal susceptibility testing of yeasts: A brief overview. Clin. Infect. Dis. 1993, 17, 494–500. [Google Scholar] [CrossRef]
- National Committee for Clinical Laboratory Standards. In Reference Method for Broth Dilution Testing of Yeasts: Approved StandardM27-A2, 2nd ed; National Committee for Clinical Laboratory Standards: Wayne, PA, USA, 2002.
- National Committee for Clinical Laboratory Standards. In Method for Antifungal Disk Diffusion Susceptibility Testing of Yeasts: Approved Guideline M44-A; National Committee for Clinical Laboratory Standards: Wayne, PA, USA, 2004.
- Masarovicova, E.; Kralova, K. Approaches to measuring plant photosynthesis activity. In Handbook of Photosynthesis, 2nd; Pessarakli, M., Ed.; Taylor & Francis Group: Boca Raton, London/New York/Singapore, 2005; pp. 617–656. [Google Scholar]
- Kralova, K.; Sersen, F.; Sidoova, E. Photosynthesis inhibition produced by 2-alkylthio-6-R-benzothiazoles. Chem. Pap. 1992, 46, 348–350. [Google Scholar]
- Fedke, C. Biochemistry and Physiology of Herbicide Action; Springer Verlag: Berlin, Germany, 1982. [Google Scholar]
- Sample Availability: Samples of the compounds are available from the authors.
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Musiol, R.; Jampilek, J.; Nycz, J.E.; Pesko, M.; Carroll, J.; Kralova, K.; Vejsova, M.; O'Mahony, J.; Coffey, A.; Mrozek, A.; et al. Investigating the Activity Spectrum for Ring-Substituted 8-Hydroxyquinolines. Molecules 2010, 15, 288-304. https://doi.org/10.3390/molecules15010288
Musiol R, Jampilek J, Nycz JE, Pesko M, Carroll J, Kralova K, Vejsova M, O'Mahony J, Coffey A, Mrozek A, et al. Investigating the Activity Spectrum for Ring-Substituted 8-Hydroxyquinolines. Molecules. 2010; 15(1):288-304. https://doi.org/10.3390/molecules15010288
Chicago/Turabian StyleMusiol, Robert, Josef Jampilek, Jacek E. Nycz, Matus Pesko, James Carroll, Katarina Kralova, Marcela Vejsova, Jim O'Mahony, Aidan Coffey, Anna Mrozek, and et al. 2010. "Investigating the Activity Spectrum for Ring-Substituted 8-Hydroxyquinolines" Molecules 15, no. 1: 288-304. https://doi.org/10.3390/molecules15010288
APA StyleMusiol, R., Jampilek, J., Nycz, J. E., Pesko, M., Carroll, J., Kralova, K., Vejsova, M., O'Mahony, J., Coffey, A., Mrozek, A., & Polanski, J. (2010). Investigating the Activity Spectrum for Ring-Substituted 8-Hydroxyquinolines. Molecules, 15(1), 288-304. https://doi.org/10.3390/molecules15010288