Bignoniaceae Metabolites as Semiochemicals
Abstract
:1. Introduction
2. Iridoids
2.1. Iridoids as Markers for Food Choice
2.2. Fate of Iridoids after Consumption
2.3. Iridoids: Produced as Induced Defenses
2.4. Iridoids: Specialization, Tolerance and Addiction
3. Bignoniaceae Secondary Metabolites with Anti-Insect Properties
3.1. Iridoids
3.2. Naphtoquinones
3.3. Other Secondary Metabolites: Miscellaneous Compounds and Whole Plant Extracts
Plant species | Extract/ Compound | Insect | Activity | Ref. |
---|---|---|---|---|
Catalpa bignonioides | 12,13 | Reticulitermes flavipes | Toxic | [45] |
Catalpa speciosa | 1,2 | Ceratomia catalpae | Phagostimulant | [27] |
11 | Choristoneura fumiferana | Antifeedant | [43] | |
2 | Camponotus floridanus | Deterrent | [40] | |
Clytostoma callistegioides | Leaf extract | Epilachna paenulata | Deterrent | [55] |
Myzus persicae | ||||
Rhopalosiphum padi | ||||
22,23 | Myzus persicae | Deterrent | [58] | |
Cybistax antisyphilitica | 16 | Aedes aegypti | Toxic | [60] |
Dolichandra cynanchoides | Leaf extract | Epilachna paenulata | Deterrent | [54,55] |
Myzus persicae | ||||
Rhopalosiphum padi | ||||
Jacaranda decurrens | 21 | Schizaphis graminum | Toxic/ Deterrent | [52] |
Jacaranda sp. | 19 | Musca domestica | Toxic | [50] |
Spodoptera litura | [51] | |||
Macfadyena unguis-cati | Leaf extract | Epilachna paenulata | Deterrent | [55] |
Myzus persicae | ||||
Rhopalosiphum padi | ||||
Millingtonia hortensis | Leaf Extract | Anopheles stephensi | Toxic | [48] |
Culex quinquefasciatus | ||||
Aedes aegypti | ||||
Spathodea campanulata | Flower mucilage | Scaptotrigona postica | Toxic | [61] |
Tabebuia guayacan | Wood extract | Reticulitermes Hesperus | Toxic/ Repellent | [46] |
16 | Microcerotermes crassus | Repellent | [47] | |
Kalotermes flavicollis | ||||
Tabebuia ochracea | Sawdust extract | Reticulitermes Hesperus | Toxic/ Repellent | [46] |
Tabebuia sp | 17 | Reticulitermes sp | Repellent | [47] |
Extract (organ extracted) | M. persicae1 | R. padi 1 | S. littoralis2 | E. paenulata2 | A. mellifera3 | R. microplus 4* |
---|---|---|---|---|---|---|
C. callistegioides (Leaves) | Deterrent | Deterrent | Inactive | Deterrent | Innocuous | Inactive |
C. callistegioides (Vines) * | Deterrent | Inactive | Inactive | Deterrent | NT | Inactive |
M. unguis-cati (Leaves) | Deterrent | Inactive | Inactive | Deterrent | Innocuous | Inactive |
M. unguis- cati (Vines) * | Inactive | Inactive | Inactive | Deterrent | NT | Inactive |
D. cynanchoides (Leaves) | Deterrent | Inactive | Inactive | Deterrent | Innocuous | Toxic |
J. mimosifolia (Leaves) * | Inactive | Inactive | Inactive | Deterrent | NT | Inactive |
Acknowledgements
References
- Gentry, A. Bignoniaceae—Part I (Crescentiae and Tourretaeae). Flora Neotropica, 25; The New York Botanical Garden: New York, NY, USA, 1980. [Google Scholar]
- Von Poser, G.L.; Schripsema, J.; Henriques, A.T.; Jensen, S.R. The distribution of iridoids in Bignoniaceae. Biochem. Syst. Ecol. 2000, 28, 351–366. [Google Scholar] [CrossRef]
- Nieminen, M.; Suomi, J.; Van Nouhuys, S.; Sauri, P.; Riekkola, L. Effect of iridoid glycoside content on oviposition host plant choice and parasitism in a specialist herbivore. J. Chem. Ecol. 2003, 29, 823–844. [Google Scholar] [CrossRef]
- Bowers, D. The role of iridoid glycosides in host-plant specificity of checkerspot butterflies. J. Chem. Ecol. 1983, 9, 475–493. [Google Scholar] [CrossRef]
- Bowers, D. Hostplant suitability and defensive chemistry of the catalpa sphinx, Ceratomia catalpae. J. Chem. Ecol. 2003, 29, 2359–2366. [Google Scholar] [CrossRef]
- Lozoya-Meckes, M.; Mellado-Campos, V. Is the Tecoma stans infusion an antidiabetic remedy? J. Ethnopharmacol. 1985, 14, 1–9. [Google Scholar] [CrossRef]
- Gentry, A. A synopsis of bignoniaceae ethnobotany and economic botany. Ann. Mo. Bot. Gard. 1992, 79, 53–64. [Google Scholar] [CrossRef]
- Aguilar-Santamaria, L.; Ramirez, G.; Nicasio, P.; Alegria-Reyes, C.; Herrera-Arellano, A. Antidiabetic activities of Tecoma stans (L.) Juss. ex Kunth. J. Ethnopharmacol. 2009, 124, 284–288. [Google Scholar] [CrossRef]
- Barbosa, J.; Lima, C.; Amorin, E.; de Sena, K.; Almeida, J.; da cunha, E.; Silva, M.; de Fitima, M.; Braz, R. Botanical study, phytochemistry and antimicrobial activity of Tabebuia aurea. Phyton (B. Aires) 2004, 221–228. [Google Scholar]
- Kim, D.; Han, K.; Chung, L.; Kim, D.; Kim, S.; Kwon, B.; Jeong, T.; Park, M.; Ahn, E.; Baek, N. Triterpenoids from the flower of Campsis grandiflora K. Schum. as human Acyl-Cok cholesterol acyltransferase inhibitors. Arch. Pharmacol. Res. 2005, 28, 550–556. [Google Scholar] [CrossRef]
- Ali, R.M.; Houghton, P.J.; Hoo, T.S. Antifungal activity of some Bignoniaceae found in Malaysia. Phytother. Res. 1998, 12, 331–334. [Google Scholar] [CrossRef]
- Alcerito, T.; Barbo, F.E.; Negri, G.; Santos, D.Y.A.C.; Meda, C.I.; Young, M.C.M.; Chavez, D.; Blatt, C.T.T. Foliar epicuticular wax of Arrabidaea brachypoda: flavonoids and antifungal activity. Biochem. Syst. Ecol. 2002, 30, 677–683. [Google Scholar] [CrossRef]
- Lima, C.S.D.A.; Cavalcanti de Amorim, E.L.; Xiato da Fonseca, K.; de Sena, R.; Chiappeta, A.d.A.; Nunes, X.P.; Agra, M.D.F.; Leitao da-Cunha, E.V.; Sobral da Silva, M.; Barbosa-Filho, J.M. Antimicrobial activity of a mixture of two isomeric phenylpropanoid glycosides from Arrabidaea harleyi A.H. Gentry (Bignoniaceae). Rev. Bras. Cienc. Farm. 2003, 39, 77–81. [Google Scholar]
- Onegi, B.; Kraft, C.; Kohler, I.; Freund, M.; Jenett-Siems, K.; Siems, K.; Beyer, G.; Melzig Matthias, F.; Bienzle, U.; Eich, E. Antiplasmodial activity of naphthoquinones and one anthraquinone from Stereospermum kunthianum. Phytochemistry 2002, 60, 39–44. [Google Scholar] [CrossRef]
- Reis de Morais, S.K.; Silva, S.G.; Portela, C.N.; Nunomura, S.M.; Quignard, E.L.J.; Pohlit, A.M. Bioactive dihydroxyfuranonaphthoquinones from the bark of Tabebuia incana A.H. Gentry (Bignoniaceae) and HPLC analysis of commercial Pau d' Arco and certified T. incana bark infusions. Acta Amazonica 2007, 37, 99–102. [Google Scholar] [CrossRef]
- Hussain, H.; Krohn, K.; Ahmad, V.U.; Miana, G.A.; Green, I.R. Lapachol: An overview. ARKIVOC 2007, 145–171. [Google Scholar]
- Ventura Pinto, A.; Lisboa de Castro, S. The trypanocidal activity of naphthoquinones: a review. Molecules 2009, 14, 4570–4590. [Google Scholar] [CrossRef]
- Lima, N.; Correia, C.; Leon, L.; Machado, G.; Madeira, M.; Santana, A.; Goulart, M. Antileishmanial activity of lapachol analogues. Mem. Inst. Oswaldo Cruz 2004, 99, 757–761. [Google Scholar] [CrossRef]
- Erlich, P.R.; Raven, P.H. Butterflies and plants: A study in coevolution. Evolution 1964, 18, 586–608. [Google Scholar] [CrossRef]
- Eisner, T.; Meinwald, J. Chemical Ecology. Proc. Natl. Acad. Sci. USA 1995, 92, 1. [Google Scholar] [CrossRef]
- Meinwald, L.; Eisner, T. The chemistry of phyletic dominance. Proc. Natl. Acad. Sci. USA 1995, 92, 14–18. [Google Scholar] [CrossRef]
- Bergström, G. Chemical ecology = chemistry + ecology! Pure Appl. Chem. 2007, 79, 2305–2323. [Google Scholar] [CrossRef]
- Karlson, P.; Butenandt, A. Pheromones (ectohormones) in insects. Annu. Rev. Entomol. 1957, 4, 39–58. [Google Scholar] [CrossRef]
- Bowers, D. Iridoid glycosides; Rosenthal, G., Berenbaum, M., Eds.; Academic Press: New York, 1991; pp. 297–375. [Google Scholar]
- Hodar, J. Host utilisation by moth and larval survival of pine processionary caterpillar Thaumetopoea pityocampa in relation to food quality in three Pinus species. Ecol. Entomol. 2002, 27, 292–301. [Google Scholar] [CrossRef]
- Larsson, S.; Ekbom, B. Oviposition mistakes in herbivorous insects: confusion or a step towards a new host plant. Oikos 1995, 72, 155. [Google Scholar] [CrossRef]
- Stephenson, A. Iridoid glycosides in the nectar of Catalpa speciosa are unpalatable to nectar thieves. J. Chem. Ecol. 1982, 8, 1025–1034. [Google Scholar] [CrossRef]
- Stephenson, A.; Thomas, W.W. Diurnal and nocturnal pollination of Catalpa speciosa (Bignoniaceae). Syst. Bot. 1977, 2, 191–198. [Google Scholar] [CrossRef]
- Stephenson, A. The role of extrafloral nectaries of Catalpa speciosa in limiting herbivory and increasing fruit production. Ecology (NY) 1982, 63, 663–669. [Google Scholar]
- Pereyra, P.; Bowers, D. Iridoid glycosides as oviposition stimulants for the buckeye butterfly, Junonia coenia (Nymphalidae). J. Chem. Ecol. 1988, 14, 917–928. [Google Scholar] [CrossRef]
- Pañuelas, J.; Sardans, J.; Stefanescu, C.; Parella, T.; Filella, I. Lonicera implexa leaves bearing naturally laid eggs of the specialist herbivore Euphydryas aurinia have dramatically greater concentrations of iridoid glycosides than other leaves. J. Chem. Ecol. 2006, 32, 1925–1933. [Google Scholar] [CrossRef]
- Bowers, D.; Puttick, G. Fate of ingested iridoid glycosides in lepidopteran herbivores. J. Chem. Ecol. 1986, 12, 169–178. [Google Scholar] [CrossRef]
- Ness, J. Catalpa bignonioides alter extrafloral nectar production after herbivory and attracts ant bodyguards. Oecologia 2003, 134, 210–218. [Google Scholar]
- Howe, G.; Jander, G. Plant immunity to insect herbivores. Annu. Rev. Plant Biol. 2008, 59, 41–66. [Google Scholar] [CrossRef]
- Bowers, D. Iridoids glycosides and host-plant specificity in larvae of the buckeye butterfly, Junonia coenia (Nymphalidae). J. Chem. Ecol. 1984, 10, 1567–1577. [Google Scholar] [CrossRef]
- Puttick, G.; Bowers, D. Effect of qualitative and quantitative variation in allelochemicals on a generalist insect: iridoids glycosides and the southern armyworm. J. Chem. Ecol. 1988, 14, 335–350. [Google Scholar] [CrossRef]
- Bowers, D.; Puttick, G. Response of generalist and specialist insects to qualitative allelochemical variation. J. Chem. Ecol. 1988, 14, 319–334. [Google Scholar] [CrossRef]
- del Campo, M.; Miles, C.; Schoroeder, F.; Mueller, C.; Booker, R.; Renwick, A. Host recognition by tobacco hornworm is mediated by a host plant compound. Nature 2001, 411, 186–189. [Google Scholar] [CrossRef]
- Bernays, E.; De Luca, C. Insect antifeedant properties of an iridoid glycoside: ipolamiide. Experientia 1981, 37, 1289–1290. [Google Scholar] [CrossRef]
- de la Fuente, M.; Dyer, L.; Bowers, D. The iridoid glycoside, catalpol, as a deterrent to the predator Camponotus floridanus (Formicidae). Chemoecology 1994, 5-6, 13–18. [Google Scholar] [CrossRef]
- El-Naggar, S.; Doskotch, R. Speciocide: a new iridoid glycoside from Catalpa speciosa. J. Nat. Prod. 1980, 43, 524–526. [Google Scholar] [CrossRef]
- Bowers, D.; Puttick, G. Iridoid glycosides and insect feeding preferences: gypsy moths (Lymantria dispar, Lymantriidae) and buckeyes (Junonia coenia, Nymphalidae). Ecol. Entomol. 1989, 14, 247–256. [Google Scholar] [CrossRef]
- Chang, C.; Nakanishi, K. Specionin, an iridoid insect antifeedant from Catalpa speciosa. J. Chem. Soc. Chem. Commun. 1983, 605–606. [Google Scholar]
- Van der Eycken, E.; Van der Eychen, J.; Vandewalle, M. Iridoids: The revised structure of specionin. J. Chem. Soc. Chem. Commun. 1985, 1719–1729. [Google Scholar] [CrossRef]
- McDaniel, C. Major antitermitic components of the heartwood of southern catalpa. J. Chem. Ecol. 1992, 18, 359–369. [Google Scholar] [CrossRef]
- Grace, K.; Wood, D.; Frankie, G. Behavior and survival of Reticulitermes hesperus banks (Isoptera: Rhinotermitidae) on selected sawdusts and wood extracts. J. Chem. Ecol. 1989, 15, 129–139. [Google Scholar] [CrossRef]
- Becker, G.; Lenz, M.; Dietz, S. Unterschiede im Verhalten und der Giftempfindlichkeit verschiedener Termiten-Arten gegenuber einigen Kernholzstoffen. Z. Angew. Entomol. 1972, 71, 201–214. [Google Scholar]
- Kaushik, R.; Saini, P. Larvicidal activity of leaf extract of Millingtonia hortensis (Family: Bignoniaceae) against Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti. J. Vector Borne Dis. 2008, 45, 66–9. [Google Scholar]
- Rodrigues, A.M.S.; de Paula, J.E.; Roblot, F.; Fournet, A.; Espindola, L.S. Larvicidal activity of Cybistax antisyphilitica against Aedes aegypti larvae. Fitoterapia 2005, 76, 755–757. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, N.; Casida, J. Insecticides in Chinese medicinal plants: survey leading to jacaranone, a neurotoxicant and glutathione-reactive quinol. J. Agric. Food Chem. 2003, 51, 2544–2547. [Google Scholar] [CrossRef]
- Lajide, L.; Escoubas, P.; Mizutani, J. Cyclohexadienones-insect growth inhibitors from foliar surfaces and tissue extracts of Senecio cannabifolius. Experientia 1996, 51, 259–263. [Google Scholar]
- Varanda, E.; Zuniga, G.; Salatino, A.; Roque, N.; Corcuera, L. Effect of ursolic acid from epicuticular waxes of Jacaranda decurrens on Schizaphis graminum. J. Nat. Prod. 1992, 55, 800–803. [Google Scholar] [CrossRef]
- Lewis, W.H.; Elvin-Lewis, M.; Gnerre, M.C. Introduction to the ethnobotanical pharmacopeia of the Amazonian Jivaro of Peru. In Medicinal and Poisonous Plants of the Tropics; Leeuwenberg, A.J., Ed.; Pudoc: Wageningen, Netherlands, 1987. [Google Scholar]
- Palacios, S.; Maggi, M.; Bazán, C.; Carpinella, C.; Turco, M.; Muñoz, A.; Alonso, R.; Nuñez, C.; Cantero, J.; Defago, M.; Ferrayoli, C.; Valladares, G. Screening of argentinian plants for pesticide activities. Fitoterapia 2007, 78, 580–584. [Google Scholar] [CrossRef]
- Castillo, L.; González-Coloma, A.; Gonález, A.; Díaz, M.; Santos, E.; Alonso-Paz, E.; Bassagoda, M.; Rossini, C. Screening of Uruguayan plants for deterrent activity against insects. Ind. Crops Prod. 2009, 29, 235–240. [Google Scholar] [CrossRef]
- Drummond, R.; Ernst, S.; Trevino, J.; Gladney, W.; Graham, O. Boophilus annulatus and Boophilus microplus: Laboratory test of insecticides. J. Econ. Entomol. 1973, 66, 130–133. [Google Scholar]
- Smith, M. Plant resistance to insects. In Biological and Biotechnological Control of Pests; Rechcigl, J.E., Rechcigl, N.A., Eds.; Yoder Brothers: Parrish, Florida, 1998; pp. 171–210. [Google Scholar]
- Castillo, L.; Díaz, M.; González-Coloma, A.; González, A.; Alonso-Paz, E.; Bassagoda, M.; Rossini, C. Clytostoma callistegioides (Bignoniaceae) wax extract with activity on aphid settling. Phytochemistry 2010. [Google Scholar] [CrossRef]
- Arnarson, J.T.; Durst, T.; Philogene, B.J.R. Phytochemical discovery of new botanical insecticides. In Biopesticides of Plant Origin; Regnault-Roger, C., Philogene, B.J.R., Vincent, C., Eds.; Lavoisier: Paris, 2005; pp. 37–46. [Google Scholar]
- Rodrigues, A.; de Paula, J.; Roblot, F.; Fournet, A.; Espindola, L. Larvicidal activity of Cybistax antisyphilitica against Aedes aegypti larvae. Fitoterapia 2005, 76, 755–757. [Google Scholar] [CrossRef]
- Trigo, J.; Santos, W. Insect mortality in Spathodea campanulata (Bignoniaceae) flowers. Rev. Bras. Biol. 1999, 60, 537–538. [Google Scholar] [CrossRef]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Castillo, L.; Rossini, C. Bignoniaceae Metabolites as Semiochemicals. Molecules 2010, 15, 7090-7105. https://doi.org/10.3390/molecules15107090
Castillo L, Rossini C. Bignoniaceae Metabolites as Semiochemicals. Molecules. 2010; 15(10):7090-7105. https://doi.org/10.3390/molecules15107090
Chicago/Turabian StyleCastillo, Lucía, and Carmen Rossini. 2010. "Bignoniaceae Metabolites as Semiochemicals" Molecules 15, no. 10: 7090-7105. https://doi.org/10.3390/molecules15107090
APA StyleCastillo, L., & Rossini, C. (2010). Bignoniaceae Metabolites as Semiochemicals. Molecules, 15(10), 7090-7105. https://doi.org/10.3390/molecules15107090