Development of Heterogeneous Olympic Medal Metal Nanoparticle Catalysts for Environmentally Benign Molecular Transformations Based on the Surface Properties of Hydrotalcite
Abstract
:1. Introduction
2. Oxidation of Alcohols
2.1. Aerobic Oxidation of Alcohols Using Au/HT
2.2. Lactonization of Diols Catalyzed by Au/HT Using O2
2.3. Dehydrogenation of Alcohols Using Cu/HT
3. Selective Deoxygenation of Epoxides and Nitro Aromatic Compounds
3.1. Deoxygenation of Epoxides Using Au/HT-Alcohols
3.2. Deoxygenation of Epoxides Using Au/HT-CO/H2O
3.3. Deoxygenation of Nitro Compounds Catalyzed by Ag/HT Using CO/H2O
4. Conclusions
Acknowledgements
References and Notes
- Sheldon, R. A.; Kochi, J. K. Metal-Catalyzed Oxidations of Organic Compounds; Academic Press: New York, NY, USA, 1981. [Google Scholar]
- Ley, S. V.; Madin, A. Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Ley, S. V., Eds.; Pergamon: Oxford, UK, 1991; Volume 7, p. 251. [Google Scholar]
- Ley, S. V.; Norman, J.; Groffith, W. P.; Marsden, S. P. Tetrapropylammonium perruthenate, Pr4NRuO4-, TPAP: A catalytic oxidation for organic synthesis. Synthesis 1994, 7, 639. [Google Scholar]
- Cainelli, G.; Cardillo, G. Chromium Oxidants in Organic Chemistry; Springer: Berlin, Germany, 1984. [Google Scholar]
- Lee, D. G.; Spitzer, U. A. The aqueous dichromate oxidation of primary alcohols. J. Org. Chem. 1970, 35, 3589. [Google Scholar] [CrossRef]
- Menger, F. M.; Lee, C. Synthetically useful oxidations at solid sodium permanganate surfaces. Tetrahedron Lett. 1981, 22, 1655. [Google Scholar] [CrossRef]
- Su, F.-Z.; Liu, Y.-M.; Wang, L.-C.; Cao, Y.; Fan, K.-N. Ga–Al mixed-oxide-supported gold nanoparticles with enhanced activity for aerobic alcohol oxidation. Angew. Chem. Int. Ed. 2008, 47, 334. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y. M. A.; Arakawa, T.; Hocke, H.; Uozumi, Y. A nanoplatinum catalyst for aerobic oxidation of alcohols in water. Angew. Chem. Int. Ed. 2007, 46, 704. [Google Scholar] [CrossRef] [PubMed]
- Christensen, C. H.; Jørgensen, B.; Rass-Hansen, J.; Egeblad, K.; Madsen, R.; Klitgaard, S. K.; Hansen, S. M.; Andersen, H. C.; Riisager, A. Formation of acetic acid by aqueous-phase oxidation of ethanol with air in the presence of a heterogeneous gold catalyst. Angew. Chem. Int. Ed. 2006, 45, 4648. [Google Scholar] [CrossRef] [PubMed]
- Enache, D. I.; Edwards, J. K.; Landon, P.; Espriu, B. S.; Carley, A. F.; Herzing, A. A.; Watanabe, M.; Kiely, C. J.; Knight, D. W.; Hutchings, G. J. Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts. Science 2006, 311, 362. [Google Scholar] [CrossRef] [PubMed]
- Abad, A.; Concepción, P.; Corma, A.; García, H. Collaborative effect between gold and a support induces the selective oxidation of alcohols. Angew. Chem. Int. Ed. 2005, 44, 4066. [Google Scholar] [CrossRef] [PubMed]
- Mori, K.; Hara, T.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Hydroxyapatite-supported palladium nanoclusters: A highly active heterogeneous catalyst for selective oxidation of alcohols by use of molecular oxygen. J. Am. Chem. Soc. 2004, 126, 10657. [Google Scholar] [CrossRef] [PubMed]
- Mertens, P. G. N.; Vandezande, P.; Ye, X.; Poelman, H.; DeVos, D. E.; Vankelecom, I. F. J. Membrane-occluded gold-palladium nanoclusters as heterogeneous catalysts for the selective oxidation of alcohols to carbonyl compounds. Adv. Synth. Catal. 2008, 350, 1241. [Google Scholar] [CrossRef]
- Mitsudome, T.; Noujima, A.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Efficient aerobic oxidation of alcohols using hydrotalcite-supported gold nanoparticle catalyst. Adv. Synth. Catal. 2009, 351, 1890. [Google Scholar] [CrossRef]
- Miyamura, H.; Matsubara, R.; Miyazaki, Y.; Kobayashi, S. Aerobic oxidation of alcohols at room temperature and atmospheric conditions catalyzed by reusable gold Nanoclusters stabilized by the benzene rings of polystyrene derivatives. Angew. Chem. Int. Ed. 2007, 46, 4151. [Google Scholar] [CrossRef] [PubMed]
- Parenty, A.; Moreau, X.; Campagne, J.-M. Macrolactonizations in the total synthesis of natural products. Chem. Rev. 2006, 106, 911. [Google Scholar] [CrossRef] [PubMed]
- Ito, M.; Osaku, A.; Shiibashi, A.; Ikariya, T. An eficient oxidative lactonization of1,4-diols catalyzed by Cp*Ru(PN) complexes. Org. Lett. 2007, 9, 1821. [Google Scholar] [CrossRef] [PubMed]
- Maytum, H. C.; Tavassoli, B.; Williams, J. M. J. Reduction of aldehydes and ketones by transfer hydrogenation with 1,4-butanediol. Org. Lett. 2007, 9, 4387. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Hartwig, F. Acceptorless, neat, ruthenium-catalyzed dehydrogenative cyclization of diols to lactones. Organometallics 2005, 24, 2441. [Google Scholar] [CrossRef]
- Nozaki, K.; Yoshida, M.; Takaya, H. Reaction rate enhancement by addition of anionic surfactant SDS in the ruthenium catalyzed hydrogen transfer from a 1,4-diol to 4-phenyl-3-buten-2-one. J. Organomet. Chem. 1994, 473, 253. [Google Scholar] [CrossRef]
- Murahashi, S.-I.; Naota, T.; Ito, K.; Maeda, Y.; Taki, H. Ruthenium-catalyzed oxidative transformation of alcohols and aldehydes to esters and lactones. J. Org. Chem. 1987, 52, 4319. [Google Scholar] [CrossRef]
- Ishii, Y.; Osakada, K.; Ikariya, T.; Saburi, M.; Yoshikawa, S. Ruthenium complex catalyzed regioselective dehydrogenation of unsymmetrical α,ω-diols. J. Org. Chem. 1986, 51, 2034. [Google Scholar] [CrossRef]
- Shvo, Y.; Blum, Y.; Reshef, D.; Menzin, M. Catalytic oxidative coupling of diols by Ru3(CO)12. J. Organomet. Chem. 1982, 226, C21. [Google Scholar] [CrossRef]
- Ishii, Y.; Suzuki, K.; Ikariya, T.; Saburi, M.; Yoshikawa, S. Regio- and stereoselective dehydrogenation of α,ω-diols catalyzed by a rhodium hydride complex. J. Org. Chem. 1986, 51, 2822. [Google Scholar] [CrossRef]
- Minami, I.; Tsuji, J. Dehydrogenation of alcohols with allyl carbonates catalyzed by palladium or ruthenium complex. Tetrahedron 1987, 43, 3903. [Google Scholar] [CrossRef]
- Tamaru, Y.; Yamada, Y.; Inoue, K.; Yamamoto, Y.; Yoshida, Z. Oxidation of primary and secondary alcohols by the catalysis of palladium. J. Org. Chem. 1983, 48, 1286. [Google Scholar] [CrossRef]
- Suzuki, T.; Morita, K.; Tsuchida, M.; Hiroi, K. Mild and chemoselective synthesis of lactones from diols using a novel metal-ligand bifunctional catalyst. Org. Lett. 2002, 4, 2361. [Google Scholar] [CrossRef] [PubMed]
- Mitsudome, T.; Noujima, A.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Supported gold nanoparticles as a reusable catalyst for synthesis of lactones from diols using molecular oxygen as an oxidant under mild conditions. Green Chem. 2009, 11, 793. [Google Scholar] [CrossRef]
- Shimizu, K.; Sugino, K.; Sawabe, K.; Satsuma, A. Oxidant-free dehydrogenation of alcohols heterogeneously catalyzed by cooperation of silver clusters and acid-base sites on alumina. Chem. Eur. J. 2009, 15, 2341. [Google Scholar] [CrossRef] [PubMed]
- Kantam, M. L.; Arundhathi, R.; Likhar, P. R.; Damodara, D. Reusable Copper-aluminum hydrotalcite/rac-BINOL system for room temperature selective aerobic oxidation of alcohols. Adv. Synth. Catal. 2009, 351, 2633. [Google Scholar] [CrossRef]
- Mitsudome, T.; Mikami, Y.; Ebata, K.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Copper nanoparticles on hydrotalcite as a heterogeneous catalyst for oxidant-free dehydrogenation of alcohols. In Chem. Commun.; 2008; p. 4804. [Google Scholar] [CrossRef]
- Mikami, Y.; Ebata, K.; Mitsudome, T.; Jitsukawa, K.; Kaneda, K. Oxidant-free lactonization of diols using a hydrotalcite-supported copper catalyst. Heterocycles 2010, 80, 855. [Google Scholar] [CrossRef]
- Corey, E. J.; Su, W. G. Total synthesis of a C15 ginkgolide, (±)-bilobalide. J. Am. Chem. Soc. 1987, 109, 7534. [Google Scholar] [CrossRef]
- Kraus, G. A.; Thomas, P. J. Synthesis of 7,7,8-trideuteriated trichothecenes. J. Org. Chem. 1988, 53, 1395. [Google Scholar] [CrossRef]
- Johnson, W. S.; Plummer, M. S.; Reddy, S. P.; Bartlett, W. R. The fluorine atom as a cation-stabilizing auxiliary in biomimetic polyene cyclizations. Total synthesis of dl-.β.-amyrin. J. Am. Chem. Soc. 1993, 115, 515. [Google Scholar] [CrossRef]
- Silverman, R. B. Model studies for a molecular mechanism of action of oral anticoagulants. J. Am. Chem. Soc. 1981, 103, 3910. [Google Scholar] [CrossRef]
- Preusch, P. C.; Suttie, J. W. A chemical model for the mechanism of vitamin K epoxide reductase. J. Org. Chem. 1983, 48, 3301. [Google Scholar] [CrossRef]
- Ogrin, D.; Chattopadhyay, J.; Sadana, A. K.; Billups, W. E.; Barron, A. R. Epoxidation and deoxygenation of single-walled carbon nanotubes: Quantification of epoxide defects. J. Am. Chem. Soc. 2006, 128, 11322. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, J.; Mukherjee, A.; Hamilton, C. E.; Kang, J.; Chakraborty, S.; Guo, W.; Kelly, K. F.; Barron, A. R.; Billups, W. E. Graphite epoxide. J. Am. Chem. Soc. 2008, 130, 5414. [Google Scholar] [CrossRef] [PubMed]
- Larock, R. C. Comprehensive Organic Transformations. Wiley: New York, NY, USA, 1999; p. 272. [Google Scholar]
- Ziegler, J. E.; Zdilla, M. J.; Evans, A. J.; Abu-Omar, M. M. H2-Driven deoxygenation of Epoxides and Diols to Alkenes Catalyzed by Methyltrioxorhenium. Inorg. Chem. 2009, 48, 9998. [Google Scholar] [CrossRef] [PubMed]
- Mitsudome, T.; Noujima, A.; Mikami, Y.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Supported gold and silver nanoparticles for green catalytic deoxygenation of epoxides into alkenes. Angew. Chem. Int. Ed. 2010, 49, 5545. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Espenson, J. H. Methylrhenium trioxide as a catalyst for oxidations with molecular oxygen and for oxygen transfer. J. Mol. Catal. A 1995, 103, 87. [Google Scholar] [CrossRef]
- Gable, K. P.; Brown, E. C. Rhenium-catalyzed epoxide deoxygenation: scope and limitations. Synlett 2003, 14, 2243. [Google Scholar] [CrossRef]
- Arterburn, J. B.; Liu, M.; Perry, M. C. Polystyrene-supported (catecholato)oxorhenium complexes: catalysts for alcohol oxidation with DMSO and for deoxygenation of epoxides to alkenes with triphenylphosphine. Helv. Chim. Acta 2002, 85, 3225. [Google Scholar] [CrossRef]
- Itoh, T.; Nagano, T.; Sato, M.; Hirobe, M. Deoxygenation of oxiran compounds to olefins by [Fe4S4(SC6H5)4]2- in the presence of NaBH4. Tetrahedron Lett. 1989, 46, 6387. [Google Scholar] [CrossRef]
- Isobe, H.; Branchaud, B. P. Epoxide deoxygenation mediated by Salen complexes. Tetrahedron Lett. 1999, 40, 8747. [Google Scholar] [CrossRef]
- Bullock, R. M. Catalytic ionic hydrogenations. Chem. Eur. J. 2004, 10, 2366, For a chemoselective hydrogenation of carbonyl compounds by heterolytic hydrogen species, see:. [Google Scholar]
- Chanda, A.; Fokin, V. V. Organic synthesis “on water”. Chem. Rev. 2009, 109, 725. [Google Scholar] [CrossRef] [PubMed]
- Minakata, S.; Komatsu, M. Organic reactions on silica in water. Chem. Rev. 2009, 109, 711. [Google Scholar] [CrossRef] [PubMed]
- Grieco, P. A. (Ed.) Organic Synthesis in Water; Blackie: London, England, 1998. [Google Scholar]
- Li, C.-J.; Chan, T.-H. Organic Reaction in Aqueous Media; Wiley: New York, NY, USA, 1997. [Google Scholar]
- Capello, C.; Fischer, U.; Hungerbühler, K. What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green Chem. 2007, 9, 927. [Google Scholar] [CrossRef]
- Mitsudome, T.; Noujima, A.; Mikami, Y.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Room-temperature deoxygenation of epoxides with CO catalyzed by hydrotalcite-supported gold nanoparticles in water. Chem. Eur. J. 2010, 16, 11818. [Google Scholar] [CrossRef] [PubMed]
- Tabakova, T.; Manzoli, M.; Vindigni, F.; Idakiev, V.; Boccuzzi, F. CO-free hydrogen production for fuel cell applications over Au/CeO2 catalysts: FTIR insight into the role of dopant. J. Phys. Chem. A. 2010, 114, 3909. [Google Scholar] [CrossRef] [PubMed]
- Pyykkö, P. Theoretical chemistry of gold. Angew. Chem. Int. Ed. 2004, 43, 4412. [Google Scholar] [CrossRef] [PubMed]
- Basińska, A.; Domka, F. Chlorine-free iron-ruthenium catalyst for the water-gas shift reaction. Catal. Lett. 1993, 22, 327, The effect of a base on the water-gas-shift-reaction is well-known. See,. [Google Scholar]
- Kaneda, K.; Fujita, K.; Takemoto, T.; Imanaka, T. Selective deoxygenation of various N-O bonds catalyzed by rhodium carbonyl clusters in the presence of H2O and CO and their heterogenization using amino-substituted polystyrenes. Bull. Chem. Soc. Jpn. 1991, 64, 602. [Google Scholar] [CrossRef]
- Escaffre, P.; Thorez, A.; Kalck, P. Applications of the water-gas shift reaction. Use of the CO/H2O couple for the conversion of various organic substrate catalyzed by transition metal complexes. J. Mol. Catal. 1985, 33, 87. [Google Scholar] [CrossRef]
- Mikami, Y.; Noujima, A.; Mitsudome, T.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Highly chemoselective reduction of nitroaromatic compounds using a hydrotalcite-supported silver-nanoparticle catalyst under a CO atmosphere. Chem. Lett. 2009, 39, 223. [Google Scholar] [CrossRef]
- Booth, G. Ullmanns Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag: Weinheim, Germany, 2002. [Google Scholar]
- Blaser, H. U.; Siegrist, U.; Steiner, H.; Studer, M. Fine Chemicals Through Heterogeneous Catalysis; Sheldon, R. A., van Bekkum, H., Eds.; Wiley-VCH: Weinheim, Germany, 2001; p. 389. [Google Scholar]
- Methoden der Organischen Chemie (Houben-Weyl); Thieme Verlag Stuttgart: New York, NY, USA, 1980; Volumn 4/1c, p. 511.
- Downing, R. S.; Kunkeler, P. J.; van Bekkum, H. Catalytic syntheses of aromatic amines. Catal. Today 1997, 37, 121. [Google Scholar] [CrossRef]
- Corma, A.; Serna, P.; Conception, P.; Calvino, J. J. Chemoselective hydrogenation of nitroaromatics by supported gold catalysts: mechanistic reasons of size-and support-dependent activity and selectivity. J. Am.Chem. Soc. 2008, 130, 8748. [Google Scholar] [CrossRef] [PubMed]
- Corma, A.; Serna, P. Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science 2006, 313, 332. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, K.; Miyamoto, Y.; Kawasaki, T.; Tanji, T.; Tai, Y.; Satsuma, A. Chemoselective hydrogenation of nitroaromatics by supported gold catalysts: mechanistic reasons of size-and support-dependent activity and selectivity. J. Phys. Chem. C. 2009, 113, 17803. [Google Scholar] [CrossRef]
- Dotzauer, D. M.; Bhattacharjee, S.; Wen, Y.; Bruening, M. L. Nanoparticle-containing membranes for the catalytic reduction of nitroaromatic compounds. Langmuir 2009, 25, 1865. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Liu, B.; Hu, L. Diethyl chlorophosphite: a mild reagent for efficient reduction of nitro compounds to amines. J. Org. Chem. 2001, 66, 919. [Google Scholar] [CrossRef] [PubMed]
- Saha, A.; Ranu, B. Highly chemoselective reduction of aromatic nitro compounds by copper nanoparticles/ammonium formate. J. Org. Chem. 2008, 73, 6867. [Google Scholar] [CrossRef] [PubMed]
- Kaneda, K.; Kuwahara, H.; Imanaka, T. Chemoselective reduction of nitro groups in the presence of olefinic, ester, and halogeno functions using a reducing agent of CO and H2O catalyzed by Rh carbonyl clusters. J. Mol. Catal. 1994, 88, L267. [Google Scholar] [CrossRef]
- Tafesh, A. M.; Beller, M.; Hoechst, A. G. First selective reduction of aromatic nitro compounds using water soluble catalysts. Tetrahedron Lett. 1995, 36, 9305. [Google Scholar] [CrossRef]
- Liu, L.; Qiao, B.; Chen, Z.; Zhang, J.; Deng, Y. Novel chemoselective hydrogenation of aromatic nitro compounds over ferric hydroxide supported nanocluster gold in the presence of CO and H2O. Chem. Commun. 2009, 653. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Wang, L.-C.; Sun, H.; Ni, J.; Cao, Y.; He, H.-Y.; Fan, K.-N. Efficient and selective room-temperature gold-catalyzed reduction of nitro compounds with CO and H2O as the hydrogen source. Angew. Chem. Int. Ed. 2009, 48, 9538. [Google Scholar] [CrossRef] [PubMed]
Entry | Substrate | Product | Time (h) | Conv.[b] (%) | Yield[b] (%) |
---|---|---|---|---|---|
Entry | Substrate | Reducing reagent | Conv.[b] (%) | Yield[b] (%) | Particle Size (nm) |
---|---|---|---|---|---|
1 | Au/HT | KBH4 | 99 | 99 | 2.7 |
2 | Au/HT | H2 | 99 | 99 | 2.7 |
3 | Au/HT | hydrazine | 71 | 69 | 4.6 |
4 | Au/MgO | KBH4 | 71 | 71 | 3.1 |
5 | Au/MgO | H2 | 37 | 37 | 4.4 |
6 | Au/MgO | hydrazine | 18 | 18 | 5.7 |
7 | Au/Al2O3 | KBH4 | 71 | 71 | 3.6 |
8 | Au/Al2O3 | H2 | 32 | 32 | 4.2 |
9 | Au/Al2O3 | hydrazine | 22 | 22 | 5.8 |
10 | Au/TiO2 | KBH4 | 16 | 14 | 3.7 |
11[c] | Au/TiO2 + Na2CO3 | KBH4 | 65 | 65 | 3.7 |
12 | Au/SiO2 | KBH4 | <1 | <1 | 14 |
Entry | Substrate | Product | Temp. (°C) | Time (h) | Conv.[b] (%) | Yield[b] (%) |
---|---|---|---|---|---|---|
Entry | Substrate | Product | Temp.(°C) | Time (h) | Conv.[b] (%) | Yield[b] (%) |
---|---|---|---|---|---|---|
Entry | Substrate | Product | Time (h) | Conv.[b] (%) | Sel.[b] (%) |
---|---|---|---|---|---|
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Kaneda, K.; Mitsudome, T.; Mizugaki, T.; Jitsukawa, K. Development of Heterogeneous Olympic Medal Metal Nanoparticle Catalysts for Environmentally Benign Molecular Transformations Based on the Surface Properties of Hydrotalcite. Molecules 2010, 15, 8988-9007. https://doi.org/10.3390/molecules15128988
Kaneda K, Mitsudome T, Mizugaki T, Jitsukawa K. Development of Heterogeneous Olympic Medal Metal Nanoparticle Catalysts for Environmentally Benign Molecular Transformations Based on the Surface Properties of Hydrotalcite. Molecules. 2010; 15(12):8988-9007. https://doi.org/10.3390/molecules15128988
Chicago/Turabian StyleKaneda, Kiyotomi, Takato Mitsudome, Tomoo Mizugaki, and Koichiro Jitsukawa. 2010. "Development of Heterogeneous Olympic Medal Metal Nanoparticle Catalysts for Environmentally Benign Molecular Transformations Based on the Surface Properties of Hydrotalcite" Molecules 15, no. 12: 8988-9007. https://doi.org/10.3390/molecules15128988
APA StyleKaneda, K., Mitsudome, T., Mizugaki, T., & Jitsukawa, K. (2010). Development of Heterogeneous Olympic Medal Metal Nanoparticle Catalysts for Environmentally Benign Molecular Transformations Based on the Surface Properties of Hydrotalcite. Molecules, 15(12), 8988-9007. https://doi.org/10.3390/molecules15128988