Structural Relationship and Binding Mechanisms of Five Flavonoids with Bovine Serum Albumin
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fluorescence quenching mechanism
Compound | T/(K) | KSV / (L·mol - 1) |
---|---|---|
formononetin-7-O-β-D-glucoside | 298 | 1.53 × 104 (r2 = 0.9883) |
310 | 1.4 × 104 (r2 = 0.9947) | |
calycosin-7-O-β-D-glucoside | 298 | 1.66 × 104 (r2 = 0.9944) |
310 | 1.4 × 104 (r2 = 0.9917) | |
calyosin | 298 | 5.51 × 104 (r2 = 0.9955) |
310 | 4.88 × 104 (r2 = 0.9954) | |
rutin | 298 | 7.88 × 104 (r2 = 0.9909) |
310 | 7.63 × 104 (r2 = 0.9939) | |
quercetin | 298 | 6.08 × 104 (r2 = 0.9954) |
310 | 5.95 × 104 (r2 = 0.9945) |
Compound | T/(K) | KLB / (L·mol - 1) |
---|---|---|
formononetin-7-O-β-D-glucoside | 298 | 0. 204 × 105 (r2=0.9976) |
310 | 0.149 × 105 (r2=0.9969) | |
calycosin-7-O-β-D-glucoside | 298 | 0.184 × 105 (r2=0.9990) |
310 | 0.178 × 105 (r2=0. 9898) | |
calyosin | 298 | 0.640 × 105 (r2=0.9896) |
310 | 0.544 × 105 (r2=0.9933) | |
rutin | 298 | 0.973 × 105 (r2=0.9802) |
310 | 0.707 × 105 (r2=0.9974) | |
quercetin | 298 | 1.170 × 105 (r2=0.9739) |
310 | 1.134 × 105 (r2=0.9909) |
2.2. Determination of the binding mode between flavonoids and BSA
Compound | T/(K) | ΔH/(kJ·mol -1) | ΔG/ (kJ·mol -1) | ΔS/(J·mol -1·K-1) |
---|---|---|---|---|
formononetin-7- O-β-D-glucoside | 298 | -20.01 | -24.59 | 15.37 |
310 | -24.77 | 15.99 | ||
calycosin-7- O-β-D-glucoside | 298 | -2.23 | -24.33 | 74.16 |
310 | -25.22 | 77.15 | ||
calycosin | 298 | -10.41 | -27.42 | 57.06 |
310 | -28.10 | 59.36 | ||
rutin | 298 | -20.48 | -28.46 | 26.78 |
310 | -28.78 | 27.85 | ||
quercetin | 298 | -2.00 | -28. 91 | 90.32 |
298 | -30. 00 | 93.96 |
2.3. Binding constants and binding sites
Compound | T/(K) | lg( F0-F) /F - lg[Q ] | KA/L·mol-1 | n |
---|---|---|---|---|
formononetin-7- O-β-D-glucoside | 298 | y = 0.902x - 1.6545 (R2 = 0.9902) | 0.22156 × 105 | 0.902 |
310 | y = 0.9964x - 1.8236 (R2 = 0.9944) | 0.15011 × 105 | 0.9964 | |
calycosin-7- O-β-D-glucoside | 298 | y = 0.96x - 1.7246 (R2 = 0.9969) | 0.18854 × 105 | 0.960 |
310 | y = 0.9376x - 1.8157 (R2 = 0.9863) | 0.15286 × 105 | 0.9376 | |
calycosin | 298 | y = 0.9675x - 1.2526 (R2 = 0.9931) | 0.55898 × 105 | 0.9675 |
310 | y = 0.9474x - 1.2613 (R2 = 0.9929) | 0.54780 × 105 | 0.9474 | |
rutin | 298 | y = 0.9518x - 1.0764 (R2 = 0.9936) | 0.83869 × 105 | 0.9518 |
310 | y = 1.0047x - 1.1281 (R2 = 0.9981) | 0.74456 × 105 | 1.0047 | |
quercetin | 298 | y = 0.8238x - 0.9928 (R2 = 0.9950) | 1.01671 × 105 | 0.8238 |
310 | y = 0.8548x - 1.0053 (R2= 0.9916) | 0.98787 × 105 | 0.8548 |
2.4. Energy transfer from BSA to flavonoids
3. Experimental
3.1. Apparatus
3.2. Reagents
3.3. Fluorescence and ultraviolet measurement
4. Conclusions
Acknowledgements
- Samples Availability: Samples of the compounds including formononetin-7-O-β-D-glucoside, calycosin-7-O-β-D-glucoside, calycosin, rutin and quercetin are available from the authors.
References
- Formica, J.V.; Regelson, W. Review of the biology of quercetin and related bioflavonoids. Food Chem. Toxicol. 1995, 33, 1061–1080. [Google Scholar]
- Liu, E.H.; Qi, L.W.; Cao, J.; Li, P.; Li, C.Y.; Peng, Y.B. Advances of Modern Chromatographic and Electrophoretic Methods in Separation and Analysis of Flavonoids. Molecules 2008, 13, 2521–2544. [Google Scholar] [CrossRef]
- Lamson, S.W.; Brignall, M.S. Antioxidants and cancer, part 3: quercetin. Altern. Med. Rev. 2000, 5, 196–208. [Google Scholar]
- Xiao, J.; Chen, X.; Zhang, L.; Talbot, S.G.; Li, G.C.; Xu, M. Investigation of the mechanism of enhanced effect of EGCG on huperzine A's inhibition of acetylcholinesterase activity in rats by a multispectroscopic method. J. Agr. Food Chem. 2008, 56, 910–915. [Google Scholar]
- He, Y.; Wang, Y.W.; Tang, L.F.; Liu, H.; Chen, W.; Zheng, Z.L.; Zou, G.L. Binding of puerarin to human serum albumin: a spectroscopic analysis and molecular docking. J. Fluoresc. 2008, 18, 433–442. [Google Scholar] [CrossRef]
- Xiao, J.B.; Suzuki, M.; Jiang, X.Y.; Chen, X.Q.; Yamamoto, K.; Xu, M. Influence of B-ring hydroxylation on interactions of flavonols with bovine serum albumin. J. Agr. Food Chem. 2008, 56, 2350–2356. [Google Scholar]
- Xiao, J.B.; Chen, J.W.; Cao, H.; Ren, F.L.; Yang, C.S.; Chen, Y.; Xu, M. Study of the interaction between baicalin and bovine serum albumin by multi-spectroscopic method. J. Photochem. Photobiol. A 2007, 191, 222–227. [Google Scholar] [CrossRef]
- Xiao, J.B.; Shi, J.; Cao, H.; Wu, S.D.; Ren, F.L.; Xu, M. Analysis of binding interaction between puerarin and bovine serum albumin by multi-spectroscopic method. J. Pharm. Biomed. Anal. 2007, 45, 609–615. [Google Scholar] [CrossRef]
- Ran, D.H.; Wu, X.; Zheng, J.H.; Yang, J.H.; Zhou, H.P.; Zhang, M.F.; Tang, Y.J. Study on the Interaction between Florasulam and Bovine Serum Albumin. J. Fluoresc. 2007, 17, 721–726. [Google Scholar] [CrossRef]
- Xiao, J.B.; Chen, X.Q.; Jiang, X.Y.; Hilczer, M.; Tachiya, M. Probing the Interaction of Trans-resveratrol with Bovine Serum Albumin: A Fluorescence Quenching Study with Tachiya Model. J. Fluoresc. 2008, 18, 671–678. [Google Scholar] [CrossRef]
- Soares, S.; Mateus, N.; Freitas, V. Interaction of different polyphenols with bovine serum albumin (BSA) and human salivary alpha-amylase (HSA) by fluorescence quenching. J. Agr. Food Chem. 2007, 55, 6726–6735. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Zhou, B.; Liu, Y.X.; Zhou, C.X.; Ding, X.L.; Liu, Y. Fluorescence study on the interaction of bovine serum albumin with p-aminoazobenzene. J. Fluoresc. 2008, 18, 109–118. [Google Scholar] [CrossRef]
- Kandagal, P.B.; Shaikh, S.T.; Manjunatha, D.H.; Seetharamappa, J.; Nagaralli, B.S. Spectroscopic studies on the binding of bioactive phenothiazine compounds to human serum albumin. J. Photochem. Photobiol. A 2007, 189, 121–127. [Google Scholar] [CrossRef]
- Zhao, J.Y.; Ren, F.L. Influence of hydroxylation and glycosylation in ring A of soybean isoflavones on interaction with BSA. Spectrochim. Acta Part A 2009, 72, 682–685. [Google Scholar] [CrossRef]
- Papadopoulou, A.; Green, R.J.; Frazier, R.A. Interaction of flavonoids with bovine serum albumin: a fluorescence quenching study. J. Agr. Food Chem. 2005, 53, 158–163. [Google Scholar] [CrossRef]
- Xiao, J.; Suzuki, M.; Jiang, X.; Chen, X.; Yamamoto, K.; Ren, F.; Xu, M. Influence of B-ring hydroxylation on interactions of flavonols with bovine serum albumin. J. Agr. Food Chem. 2008, 56, 2350–2356. [Google Scholar] [CrossRef]
- Chi, Z.; Liu, R.; Zhang, H. Noncovalent interaction of oxytetracycline with the enzyme trypsin. Biomacromolecules 2010, 11, 2454–2459. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 2nd ed; Plenum: New York, NY, USA, 1999; p. 239. [Google Scholar]
- Ware, W.R. Oxygen quenching of fluorescence in solution: An experimental study of the diffusion process. J. Phys. Chem. 1962, 66, 455–458. [Google Scholar] [CrossRef]
- Leckband, D. Measuring the forces that control protein interactions. Annu. Rev. Biophys. Biomol. Struct. 2000, 29, 1–13. [Google Scholar] [CrossRef]
- Ross, D.P.; Subramanian, S. Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 1981, 20, 3096–3102. [Google Scholar] [CrossRef]
- Tian, J.N.; Liu, J.Q.; Zhang, J.Y.; Hu, Z.D.; Chen, X.G. Fluorescence studies on the interactions of barbaloin with bovine serum albumin. Chem. Pharm. Bull. 2003, 51, 579–582. [Google Scholar] [CrossRef]
- Hu, Y.J.; Liu, Y.; Sun, T.Q.; Bai, A.M.; Lv, J.Q.; Pi, Z.B. Binding of anti-inflammatory drug cromolyn sodium to bovine serum albumin. Inter. J. Biol. Macromol. 2006, 39, 280–285. [Google Scholar] [CrossRef]
- Hu, Y.J.; Liu, Y.; Xiao, X.H. Investigation of the Interaction between Berberine and Human Serum Albumin. Biomacromolecules 2009, 10, 517–521. [Google Scholar] [CrossRef]
- Weiss, S. Fluorescence spectroscopy of single biomolecules. Science 1999, 283, 1676–1683. [Google Scholar] [CrossRef]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Liu, E.-H.; Qi, L.-W.; Li, P. Structural Relationship and Binding Mechanisms of Five Flavonoids with Bovine Serum Albumin. Molecules 2010, 15, 9092-9103. https://doi.org/10.3390/molecules15129092
Liu E-H, Qi L-W, Li P. Structural Relationship and Binding Mechanisms of Five Flavonoids with Bovine Serum Albumin. Molecules. 2010; 15(12):9092-9103. https://doi.org/10.3390/molecules15129092
Chicago/Turabian StyleLiu, E-Hu, Lian-Wen Qi, and Ping Li. 2010. "Structural Relationship and Binding Mechanisms of Five Flavonoids with Bovine Serum Albumin" Molecules 15, no. 12: 9092-9103. https://doi.org/10.3390/molecules15129092
APA StyleLiu, E. -H., Qi, L. -W., & Li, P. (2010). Structural Relationship and Binding Mechanisms of Five Flavonoids with Bovine Serum Albumin. Molecules, 15(12), 9092-9103. https://doi.org/10.3390/molecules15129092