Synthetic Applications of Chiral Unsaturated Epoxy Alcohols Prepared by Sharpless Asymmetric Epoxidation
Abstract
:Abbreviations
Ac | acetyl |
ACN | acetonitrile |
Ac2O | acetic anhydride |
aq. | aqueous |
9-BBN | 9-borabicyclo[3.3.1]nonane |
Bn | benzyl |
Boc2O | di-tert-butyl dicarbonate |
cat. | catalyst |
CuTC | copper(I)-thiophene-2-carboxylate |
Cy | cyclohexyl |
CM | cross metathesis |
DCC | dicyclohexylcarbodiimide |
DDQ | 2,3-dichloro-5,6-dicyano-1,4-benzoquinone |
de. | diastereomeric excess |
DIPT | diisopropyl tartrate |
DMAP | 4-dimethylaminopyridine |
DME | dimethoxyethane |
DMF | dimethylformamide |
DMP | Dess-Martin periodinane: 1,1,1-triacetoxy-1,1-dihydro-1,2-benziodoxol-3(1H)-one |
DMPM | 3,4-dimethoxybenzyl |
DMSO | dimethyl sulfoxide |
dr | diastereomeric ratio |
ee | enantiomeric excess |
HMPA | hexamethylphosphoramide |
Imid. | imidazole |
Mes | 2,4,6-trimethylphenyl |
MS | molecular sieves |
MsCl | mesityl chloride |
NMO | N-methyl-morpholine-N-oxide |
nm | not measured |
Pip. | piperidine |
PMB | p-methoxybenzyl |
PSA | p-TsOH.H2O: p-toluenesulfonic acid monohydrate |
Pyr. | pyridine |
RedAl | sodium bis(2-methoxyethoxy)aluminum hydride |
RCM | ring-closing metathesis |
SAE | Sharpless asymmetric epoxidation |
TASF | tris(dimethylamino)sulfonium difluorotrimethylsilicate |
TBAF | tetra-n-butylammonium fluoride |
TBS | tert-butyldimethylsilyl |
TBDPS | tert-butyldiphenylsilyl |
TEMPO | 2,2,6,6-tetramethylpiperidine-1-oxyl |
TES | triethylsilyl |
Tf | triflate |
THF | tetrahydrofuran |
TIPS | triisopropylsilyl |
TMS | trimethylsilyl |
TPAP | tetrapropylammonium perruthenate |
TsCl | m-toluenesulfonyl chloride |
1. Introduction
2. Synthesis of Chiral Epoxy Alcohols
Epoxy alcohol | Structure | Yield (%) | ee (%) | References |
---|---|---|---|---|
2 | n.d.* | 96 | [13,57,58,85] | |
6 | 50 | nd | [74] | |
7 | 98 | 61 | [53] | |
8 | 83 | 88 | [52] | |
9 | 85 | 95 | [51] | |
10 | 21** | 96 | [51] | |
11 | 82 | 92 | [82],[47] | |
Z 11 | 82 | >99 | [28],[45] | |
12 | 75 | 93.6 | [44] | |
13 | 83 | 93 | [88] | |
14 | 90 | nm | [41] | |
15 | 72 | nm | [16] | |
16 | 91 | 90 (de.) | [34] | |
17 | 90 | nm | [30] | |
18 | 92 | >90 | [17] | |
19 | 92 | 94 | [82],[68] | |
20 | 92 | 91 | [18] | |
21 | nm | 63 | [42] | |
22 | 99 | 92 | [19] | |
23 | 72 | 98 (de) | [29] | |
24 | 93 | 97 | [26] | |
25 | 70 | >95 | [20] | |
26 | 75 | 99 | [37] | |
27 | 85 | 91 | [82],[25],[50],[49] | |
28 | 91 | >94 | [21] | |
29 | 92 | >99 | [33] |
3. Transformations of C1
4. Epoxide Ring-Opening at C2
4.1. Nucleophilic attack at C2 with carbon nucleophiles
4.2. Nucleophilic reduction at C2 with hydride
4.3. Nucleophilic attack at C2 with nitrogen nucleophiles
5. Epoxide Ring-Opening at C3
5.1. Nucleophilic attack at C3 with carbon nucleophiles
5.2. Nucleophilic attack at C3 with oxygen or sulfur nucleophiles
5.3. Nucleophilic attack at C3 with nitrogen nucleophiles
6. Conclusions
Acknowledgements
References and Notes
- Gao, Y.; Klunder, J.M.; Hanson, R.M.; Masamune, H.; Ko, S.Y.; Sharpless, K.B. Catalytic asymmetric epoxidation and kinetic resolution: Modified procedures including in situ derivatization. J. Am. Chem. Soc. 1987, 109, 5765–5780. [Google Scholar]
- Schinzer, D. Asymmetric synthesis.The Sharpless epoxidation. In Organic Synthesis Highlights II; VCH: Weinheim, Germany, 1995; pp. 3–8. [Google Scholar]
- Katsuki, T.; Martin, V. Asymmetric epoxidation of allylic alcohols: The Katsuki-Sharpless epoxidation reaction. Org. React. 1996, 48, 1–299. [Google Scholar]
- Grubbs, R.H.; Chang, S. Recent advances in olefin metathesis and its application in organic synthesis. Tetrahedron 1998, 54, 4413–4450. [Google Scholar] [CrossRef]
- Yet, L. Metal-mediated synthesis of medium-sized rings. Chem. Rev. 2000, 100, 2963–3007. [Google Scholar] [CrossRef]
- Van Otterlo, W.A.L.; de Koning, C.B. Metathesis in the synthesis of aromatic compounds. Chem. Rev. 2009, 109, 3743–3782. [Google Scholar]
- Grubbs, R.H.; Miller, S.J.; Fu, G.C. Ring-closing metathesis and related processes in organic synthesis. Acc. Chem. Res. 1995, 28, 446–452. [Google Scholar] [CrossRef]
- Gibson, S.E.; Keen, S.P. Cross-metathesis. In Topics in Organometallic Chemistry; Springer-Verlag: Berlin, Germany, 1998; pp. 155–181. [Google Scholar]
- Connon, S. Recent developments in olefin cross-metathesis. Angew. Chem. Int. Ed. 2003, 42, 1900. [Google Scholar] [CrossRef]
- Garber, S.B.; Kingsbury, J.S.; Gray, B.L.; Hoveyda, A.H. Efficient and recyclable monomeric and dendritic Ru-based metathesis catalysts. J. Am. Chem. Soc. 2000, 122, 8168–8179. [Google Scholar]
- Kingsbury, J.S.; Harrity, J.P.A.; Bonitatebus, P.J.; Hoveyda, A.H. A recyclable Ru-based metathesis catalyst. J. Am. Chem. Soc. 1999, 121, 791–799. [Google Scholar]
- Jaeger, V.; Huemmer, W.; Stahl, U.; Gracza, T. Controlled synthesis of enantio-, regio-, and diastereomers of amino-4-pentenediols from 1,4-pentadien-3-ol via epoxy-4-pentenols I. Erythro-1-amino-4-pentene-2,3-diols. Synthesis 1991, 769–776. [Google Scholar]
- Jaeger, V.; Schroeter, D.; Koppenhoefer, B. Asymmetric sharpless epoxidation of divinylcarbinol. erythro-D and -L-4-pentenitols by hydrolysis of regioisomeric epoxy-4-pentenols. Tetrahedron 1991, 47, 2195–2210. [Google Scholar] [CrossRef]
- Jaeger, V.; Stahl, U.; Huemmer, W. Controlled synthesis of regio-, enantio-, and diastereomers of amino-4-pentenediols from 1,4-pentadien-3-ol via epoxy-4-pentenols. II. erythro- and threo-3-amino-4-pentene-1,2-diols and erythro-2-benzylamino-4-pentene-1,3-diol. Synthesis 1991, 776–782. [Google Scholar]
- Payne, G.B. Epoxide migrations with alpha, beta-epoxy alcohols. J. Org. Chem. 1962, 27, 3819–3822. [Google Scholar] [CrossRef]
- Taber, D.F.; Zhang, Z. Synthesis of the enediol isofurans, endogenous oxidation products of arachidonic acid. J. Org. Chem. 2006, 71, 926–933. [Google Scholar]
- Parker, K.A.; Lim, Y. The total synthesis of (-)-SNF4435 C and (+)-SNF4435 D. J. Am. Chem. Soc. 2004, 126, 15968–15969. [Google Scholar] [CrossRef]
- Riou, M.; Barriault, L. De novo synthesis of (+)-isofregenedol. J. Org. Chem. 2008, 73, 7436–7439. [Google Scholar]
- Yuasa, H.; Makado, G.; Fukuyama, Y. Determination of the absolute configuration of vibsanin F by asymmetric synthesis via pi-allylpalladium complex. Tetrahedron Lett. 2003, 44, 6235–6239. [Google Scholar] [CrossRef]
- Katsuki, T.; Sharpless, K.B. The first practical method for asymmetric epoxidation. J. Am. Chem. Soc. 1980, 102, 5974–5976. [Google Scholar]
- Takahashi, S.; Kubota, A.; Nakata, T. Stereoselective total synthesis of muconin. Tetrahedron 2003, 59, 1627–1638. [Google Scholar] [CrossRef]
- Pena, P.C.A.; Roberts, S.M. The chemistry of epoxy alcohols. Curr. Org. Chem. 2003, 7, 555–571. [Google Scholar]
- Hanson, R.M. The synthetic methodology of nonracemic glycidol and related 2,3-epoxy alcohols. Chem. Rev. 1991, 91, 437–476. [Google Scholar] [CrossRef]
- Behrens, C.H.; Sharpless, K.B. New transformations of 2,3-epoxy alcohols and related derivatives. Easy routes to homochiral substances. Aldrichim. Acta 1983, 16, 67–80. [Google Scholar]
- Rodriguez, A.; Nomen, M.; Spur, B.W.; Godfroid, J.; Lee, T.H. Total synthesis of leukotrienes from butadiene. Eur. J. Org. Chem. 2000, 2991–3000. [Google Scholar]
- Larrosa, I.; Da Silva, M.I.; Gomez, P.M.; Hannen, P.; Ko, E.; Lenger, S.R.; Linke, S.R.; White, A.J.P.; Wilton, D.; Barrett, A.G.M. Highly convergent three component benzyne coupling: The total synthesis of ent-clavilactone B. J. Am. Chem. Soc. 2006, 128, 14042–14043. [Google Scholar]
- Berberich, S.M.; Cherney, R.J.; Colucci, J.; Courillon, C.; Geraci, L.S.; Kirkland, T.A.; Marx, M.A.; Schneider, M.F.; Martin, S.F. Total synthesis of (+)-ambruticin S. Tetrahedron 2003, 59, 6819–6832. [Google Scholar]
- Heck, M.; Baylon, C.; Nolan, S.P.; Mioskowski, C. Triple ring closing metathesis reaction: Synthesis of adjacent cyclic ethers. Org. Lett. 2001, 3, 1989–1991. [Google Scholar]
- Furstner, A.; Bouchez, L.C.; Funel, J.; Liepins, V.; Poree, F.; Gilmour, R.; Beaufils, F.; Laurich, D.; Tamiya, M. Total syntheses of amphidinolide H and G. Angew. Chem., Int. Ed. 2007, 46, 9265–9270. [Google Scholar]
- Yadav, J.S.; Somaiah, R.; Ravindar, K.; Chandraiah, L. Stereoselective total synthesis of (+)-mueggelone, a novel inhibitor of fish development. Tetrahedron Lett. 2008, 49, 2848–2850. [Google Scholar]
- Corey, E.J.; Marfat, A.; Laguzza, B.C. Total synthesis of 5S,12S-dihydroxy-6,10-E,8,14-Z-eicosatetraenoic acid, a new human metabolite of arachidonic acid. Tetrahedron Lett. 1981, 22, 3339–3342. [Google Scholar] [CrossRef]
- Yadav, J.S.; Shekharam, T.; Gadgil, V.R. Titanocene induced regioselective deoxygenation of 2,3-epoxy alcohols: A new reaction for the synthesis of allylic alcohols. J. Chem. Soc. Chem. Commun. 1990, 843–844. [Google Scholar]
- Fukuda, Y.; Shindo, M.; Shishido, K. Total synthesis of (-)-aspidospermine via Diastereoselective ring-closing olefin metathesis. Org. Lett. 2003, 5, 749–751. [Google Scholar] [CrossRef]
- Kanada, R.M.; Itoh, D.; Nagai, M.; Niijima, J.; Asai, N.; Mizui, Y.; Abe, S.; Kotake, Y. Total synthesis of the potent antitumor macrolides pladienolide B and D. Angew. Chem. Int. Ed. 2007, 46, 4350–4355. [Google Scholar]
- Wang, Z.; Tu, Y.; Frohn, M.; Zhang, J.; Shi, Y. An efficient catalytic asymmetric epoxidation method. J. Am. Chem. Soc. 1997, 119, 11224–11235. [Google Scholar] [CrossRef]
- Sarandeses, L.A.; Mourino, A.; Luche, J.L. Cleavage of 2,3-epoxyalkyl halides by the sonochemical zinc-copper couple. J. Chem. Soc. Chem. Commun. 1991, 818–820. [Google Scholar]
- Ichige, T.; Okano, Y.; Kanoh, N.; Nakata, M. Total synthesis of methyl sarcophytoate, a marine natural biscembranoid. J. Org. Chem. 2009, 74, 230–243. [Google Scholar] [CrossRef]
- Gao, Y.; Klunder, J.M.; Hanson, R.M.; Masamune, H.; Ko, S.Y.; Sharpless, K.B. Catalytic asymmetric epoxidation and kinetic resolution: Modified procedures including in situ derivatization. J. Am. Chem. Soc. 1987, 109, 5765–5780. [Google Scholar]
- Van Dyke, A.R.; Jamison, T.F. Functionalized templates for the convergent assembly of polyethers: Synthesis of the HIJK rings of gymnocin A. Angew. Chem. Int. Ed. 2009, 48, 4430–4432. [Google Scholar] [CrossRef] [Green Version]
- Yadav, J.S.; Deshpande, P.K.; Sharma, G.V.M. An effective, practical method for the synthesis of chiral propargyl alcohols. Tetrahedron 1990, 46, 7033–7046. [Google Scholar]
- Yadav, J.S.; Bhanu, L.R.M.; Dutta, D. Stereoselective total syntheses of (9S)- and (9R)-HETE. Tetrahedron 1998, 54, 3929–3934. [Google Scholar] [CrossRef]
- Marshall, J.A.; Piettre, A.; Paige, M.A.; Valeriote, F. A modular synthesis of annonaceous acetogenins. J. Org. Chem. 2003, 68, 1771–1779. [Google Scholar]
- Hoye, T.R.; Suhadolnik, J.C. Stereocontrolled synthesis of 2,5-linked bistetrahydrofurans via the triepoxide cascade reaction. Tetrahedron 1986, 42, 2855–2862. [Google Scholar] [CrossRef]
- Kong, L.; Zhuang, Z.; Chen, Q.; Deng, H.; Tang, Z.; Jia, X.; Li, Y.; Zhai, H. A facile asymmetric synthesis of (+)-eldanolide. Tetrahedron Asymmetry 2007, 18, 451–454. [Google Scholar] [CrossRef]
- Krishna, P.R.; Lopinti, K. A concise stereoselective total synthesis of (2R,2'R)-threo-(+)-methylphenidate via a ring-closing metathesis protocol. Synlett 2007, 1742–1744. [Google Scholar]
- Ma, S.; Ni, B. Double ring-closing metathesis reaction of nitrogen-containing tetraenes: Efficient construction of bicyclic alkaloid skeletons and synthetic application to four stereoisomers of lupinine and their derivatives. Chem. Eur. J. 2004, 10, 3286–3300. [Google Scholar] [CrossRef]
- Sabitha, G.; Sudhakar, K.; Reddy, N.M.; Rajkumar, M.; Yadav, J.S. Chelation-controlled reduction: An enantioselective synthesis of (-)-tarchonanthuslactone. Tetrahedron Lett. 2005, 46, 6567–6570. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Lei, H. Chelation-controlled reduction: Stereoselective formation of syn-1,3-diols and synthesis of compactin and mevinolin lactone. J. Org. Chem. 2002, 67, 8783–8788. [Google Scholar] [CrossRef]
- Ball, M.; Bradshaw, B.J.; Dumeunier, R.; Gregson, T.J.; MacCormick, S.; Omori, H.; Thomas, E.J. A preliminary evaluation of a metathesis approach to bryostatins. Tetrahedron Lett. 2006, 47, 2223–2227. [Google Scholar]
- Hiebel, M.; Pelotier, B.; Lhoste, P.; Piva, O. Synthesis of bistramide A and analogues, part 1: Stereoselective access to normethyl tetrahydropyran subunit. Synlett 2008, 1202–1204. [Google Scholar]
- Dupradeau, F.; Prandi, J.; Beau, J. Synthesis of 2,6-dideoxy-4-S-methyl-4-thio-D-ribo-hexopyranose, a component of the esperamycin oligosaccharide. Tetrahedron 1995, 51, 3205–3220. [Google Scholar]
- Gopalarathnam, A.; Nelson, S.G. Amphidinolide, B: Asymmetric synthesis of a C7-C20 synthon. Org. Lett. 2006, 8, 7–10. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Lei, H. An enantioselective synthesis of the core unit of the non-nucleoside reverse transcriptase inhibitor taurospongin A. Tetrahedron Asymmetry 2003, 14, 629–634. [Google Scholar] [CrossRef]
- Lebel, H.; Jacobsen, E.N. Enantioselective total synthesis of taurospongin A. J. Org. Chem. 1998, 63, 9624–9625. [Google Scholar]
- Roush, W.R.; Brown, R.J. Total synthesis of carbohydrates. 3. Efficient enantioselective syntheses of 2,6-dideoxyhexoses. J. Org. Chem. 1983, 48, 5093–5101. [Google Scholar] [CrossRef]
- Roush, W.R.; Adam, M.A. Directed openings of 2,3-epoxy alcohols via reactions with isocyanates: synthesis of (+)-erythro-dihydrosphingosine. J. Org. Chem. 1985, 50, 3752–3757. [Google Scholar]
- Martin, R.; Moyano, A.; Pericas, M.A.; Riera, A. A Concise enantioselective entry to the synthesis of deoxy-aza-sugars. Org. Lett. 2000, 2, 93–95. [Google Scholar] [CrossRef]
- Martin, R.; Murruzzu, C.; Pericas, M.A.; Riera, A. General approach to glycosidase inhibitors. Enantioselective synthesis of deoxymannojirimycin and swainsonine. J. Org. Chem. 2005, 70, 2325–2328. [Google Scholar] [CrossRef]
- Ciufolini, M.A.; Hermann, C.Y.W.; Dong, Q.; Shimizu, T.; Swaminathan, S.; Xi, N. Nitrogen heterocycles from furans. The aza-Achmatowicz reaction. Synlett 1998, 105–114. [Google Scholar]
- Shirai, M.; Okamoto, S.; Sato, F. Practical synthesis of optically active bicyclic oxazolidinylpiperidines, chiral building blocks for preparing 1-deoxyazasugars, from serine. Tetrahedron Lett. 1999, 40, 5331–5332. [Google Scholar] [CrossRef]
- Asano, K.; Hakogi, T.; Iwama, S.; Katsumura, S. New entry for asymmetric deoxyazasugar synthesis: Syntheses of deoxymannojirimycin, deoxyaltrojirimycin and deoxygalactostatin. Chem. Commun. 1999, 41–42. [Google Scholar]
- Al-Rawi, S.; Hinderlich, S.; Reutter, W.; Giannis, A. Sialic acids: Synthesis and biochemical properties of reversible inhibitors of UDP-N-acetylglucosamine 2-epimerase. Angew. Chem. Int. Ed. 2004, 43, 4366–4370. [Google Scholar] [CrossRef]
- Murruzzu, C.; Alonso, M.; Canales, A.; Jimenez-Barbero, J.; Riera, A. Synthesis and NMR experiments of (4,5,6-13C)-deoxymannojirimycin. A new entry to 13C-labeled glycosidase inhibitors. Carbohydr. Res. 2007, 342, 1805–1812. [Google Scholar] [CrossRef]
- Alegret, C.; Ginesta, X.; Riera, A. Asymmetric synthesis of cis-4- and trans-3-hydroxypipecolic acids. Eur. J. Org. Chem. 2008, 1789–1796. [Google Scholar]
- Ginesta, X.; Pericas, M.A.; Riera, A. Enantioselective synthesis of erythro-β-hydroxyglutamic acid. Synth. Commun. 2005, 35, 289–297. [Google Scholar] [CrossRef]
- Suzuki, T.; Saimoto, H.; Tomioka, H.; Oshima, K.; Nozaki, H. Regio- and stereoselective ring opening of epoxy alcohols with organoaluminum compounds leading to 1,2-diols. Tetrahedron Lett. 1982, 23, 3597–3600. [Google Scholar] [CrossRef]
- Roush, W.R.; Adam, M.A.; Peseckis, S.M. Regioselectivity of the reactions of trialkylaluminum reagents with 2,3-epoxy alcohols: Application to the synthesis of alpha -chiral aldehydes. Tetrahedron Lett. 1983, 24, 1377–1380. [Google Scholar]
- Banwell, M.G.; McLeod, M.D.; Premraj, R.; Simpson, G.W. Improved synthetic route to enantiomerically pure samples of the tetrahydropyran-2-ylacetic acid core associated with the phytotoxic polyketide herboxidiene. Aust. J. Chem. 2000, 53, 659–664. [Google Scholar] [CrossRef]
- Balasubramaniam, R.P.; Moss, D.K.; Wyatt, J.K.; Spence, J.D.; Gee, A.; Nantz, M.H. Methylation-ring opening of 3,3-disubstituted 2,3-epoxy alcohols. Synthesis of chiral quaternary fragments for assembly of briaran diterpenes. Tetrahedron 1997, 53, 7429–7444. [Google Scholar]
- Caron, M.; Sharpless, K.B. Titanium isopropoxide-mediated nucleophilic openings of 2,3-epoxy alcohols. A mild procedure for regioselective ring-opening. J. Org. Chem. 1985, 50, 1557–1560. [Google Scholar] [CrossRef]
- Infante, I.; Bonini, C.; Lelj, F.; Righi, G. A first theoretical study on the origin of the metal-mediated regioselective opening of 2,3-epoxy alcohols. J. Org. Chem. 2003, 68, 3773–3780. [Google Scholar]
- Chini, M.; Crotti, P.; Macchia, F. Regioalternating selectivity in the metal salt catalyzed aminolysis of styrene oxide. J. Org. Chem. 1991, 56, 5939–5942. [Google Scholar] [CrossRef]
- Sakamoto, Y.; Okazaki, M.; Miyamoto, K.; Nakata, T. Efficient phthalate-tethered ring-closing metathesis as a cross-coupling reaction. Tetrahedron Lett. 2001, 42, 7633–7636. [Google Scholar]
- McDonald, F.E.; Gleason, M.M. Asymmetric synthesis of nucleosides via molybdenum-catalyzed alkynol cycloisomerization coupled with stereoselective glycosylations of deoxyfuranose glycals and 3-amidofuranose glycals. J. Am. Chem. Soc. 1996, 118, 6648–6659. [Google Scholar] [CrossRef]
- McDonald, F.E.; Zhu, H.Y.H. Synthesis of pyranose glycals via tungsten and molybdenum pentacarbonyl-induced alkynol cyclizations. Tetrahedron 1997, 53, 11061–11068. [Google Scholar] [CrossRef]
- Poch, M.; Alcon, M.; Moyano, A.; Pericas, M.A.; Riera, A. A short enantioselective synthesis of N-Boc-α-amino acids from epoxy alcohols. Tetrahedron Lett. 1993, 34, 7781–7784. [Google Scholar] [CrossRef]
- Pasto, M.; Moyano, A.; Pericas, M.A.; Riera, A. An enantioselective, stereodivergent approach to anti- and syn-α-hydroxy-β-amino acids from anti-3-amino-1,2-diols. Synthesis of the ready for coupling Taxotere side chain. Tetrahedron Asymmetry 1996, 7, 243–262. [Google Scholar] [CrossRef]
- Pasto, M.; Castejon, P.; Moyano, A.; Pericas, M.A.; Riera, A. A catalytic asymmetric synthesis of cyclohexylnorstatine. J. Org. Chem. 1996, 61, 6033–6037. [Google Scholar]
- Pasto, M.; Moyano, A.; Pericas, M.A.; Riera, A. A catalytic asymmetric synthesis of N-Boc-β-methylphenylalanines. J. Org. Chem. 1997, 62, 8425–8431. [Google Scholar]
- Medina, E.; Moyano, A.; Pericas, M.A.; Riera, A. Enantioselective syntheses of conformationally rigid, highly lipophilic mesityl-substituted amino acids. Helv. Chim. Acta 2000, 83, 972–988. [Google Scholar] [CrossRef]
- Martin, R.; Islas, G.; Moyano, A.; Pericas, M.A.; Riera, A. A new method for the enantioselective synthesis of N-Boc-α,α-disubstituted a-amino acids. Tetrahedron 2001, 57, 6367–6374. [Google Scholar] [CrossRef]
- Alcon, M.; Moyano, A.; Pericas, M.A.; Riera, A. Enantioselective synthesis of unsaturated amino acids using p-methoxybenzylamine as an ammonia equivalent. Tetrahedron Asymmetry 1999, 10, 4639–4651. [Google Scholar]
- Alcon, M.; Poch, M.; Moyano, A.; Pericas, M.A.; Riera, A. Enantioselective synthesis of (S)-vigabatrin. Tetrahedron Asymmetry 1997, 8, 2967–2974. [Google Scholar]
- Martin, R.; Alcon, M.; Pericas, M.A.; Riera, A. Ring-closing metathesis of chiral allylamines. Enantioselective synthesis of (2S,3R,4S)-3,4-dihydroxyproline. J. Org. Chem. 2002, 67, 6896–6901. [Google Scholar] [CrossRef]
- Murruzzu, C.; Riera, A. Enantioselective synthesis of hydroxylated pyrrolidines via sharpless epoxidation and olefin metathesis. Tetrahedron Asymmetry 2007, 18, 149–154. [Google Scholar]
- Ginesta, X.; Pericas, M.A.; Riera, A. Straightforward entry to the pipecolic acid nucleus. Enantioselective synthesis of baikiain. Tetrahedron Lett. 2002, 43, 779–782. [Google Scholar] [CrossRef]
- Alegret, C.; Riera, A. Enantioselective synthesis of indolizidine alkaloid trans-209D. J. Org. Chem. 2008, 73, 8661–8664. [Google Scholar]
- Alegret, C.; Santacana, F.; Riera, A. Enantioselective synthesis of trans-4-methylpipecolic acid. J. Org. Chem. 2007, 72, 7688–7692. [Google Scholar] [CrossRef]
- Ginesta, X.; Pasto, M.; Pericas, M.A.; Riera, A. New stereodivergent approach to 3-amino-2,3,6-trideoxysugars. Enantioselective synthesis of daunosamine, ristosamine, acosamine, and epi-daunosamine. Org. Lett. 2003, 5, 3001–3004. [Google Scholar] [CrossRef]
- Alegret, C.; Benet-Buchholz, J.; Riera, A. Stereodivergent syntheses of conduramines and aminocyclitols. Org. Lett. 2006, 8, 3069–3072. [Google Scholar] [CrossRef]
- Sample Availability: Contact the authors.
© 2010 by the authors;
Share and Cite
Riera, A.; Moreno, M. Synthetic Applications of Chiral Unsaturated Epoxy Alcohols Prepared by Sharpless Asymmetric Epoxidation. Molecules 2010, 15, 1041-1073. https://doi.org/10.3390/molecules15021041
Riera A, Moreno M. Synthetic Applications of Chiral Unsaturated Epoxy Alcohols Prepared by Sharpless Asymmetric Epoxidation. Molecules. 2010; 15(2):1041-1073. https://doi.org/10.3390/molecules15021041
Chicago/Turabian StyleRiera, Antoni, and María Moreno. 2010. "Synthetic Applications of Chiral Unsaturated Epoxy Alcohols Prepared by Sharpless Asymmetric Epoxidation" Molecules 15, no. 2: 1041-1073. https://doi.org/10.3390/molecules15021041
APA StyleRiera, A., & Moreno, M. (2010). Synthetic Applications of Chiral Unsaturated Epoxy Alcohols Prepared by Sharpless Asymmetric Epoxidation. Molecules, 15(2), 1041-1073. https://doi.org/10.3390/molecules15021041