Novel Indole-Based Analogs of Melatonin: Synthesis and in Vitro Antioxidant Activity Studies
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effects of synthesized indole derivatives on cellular ROS
2.2. Inhibitory effect of synthesized indole derivatives on hydrogen peroxide-induced peroxidation of human erythrocyte membranes
2.3. The antioxidant effect of synthesized indole derivatives on AAPH-induced oxidative hemolysis
Substrate | tlag (min) |
---|---|
AAPH | 97 |
10 μM MLT | 128 |
1 MM MLT | >300 |
10 μM 1a | 160 |
10 μM 1b | 137 |
10 μM 1d | 160 |
10 μM 1g | 160 |
10 μM 1j | 160 |
10 μM 1k | 160 |
10 μM 1l | 160 |
10 μM 1n | 131 |
10 μM 1p | 160 |
10 μM 1r | 97 |
10 μM 1s | 124 |
10 μM 1t | 124 |
3. Experimental
3.1. Material and methods
3.2. Chemistry
3.3. General procedure for the synthesis of compounds 1a–p
3.4. General procedure for the synthesis of compounds 1r–s
3.5. General procedure for the synthesis of compound 1t
3.6. In Vitro Antioxidant Activities
3.6.1. Erytrocyte Isolation
3.6.2. Estimation of Reactive Oxygen Species by DCFH-DA
3.6.3. Measurement of H2O2-induced lipid peroxidation levels
3.6.4. Determination of Erythrocyte Hemolysis
3.6.5. Statistical analysis
4. Conclusions
Acknowledgements
References
- Tan, D.X.; Chen, L.D.; Poeggeler, B.; Manchester, L.C.; Reiter, R.J. Melatonin: a potent endogenous hydroxyl radical scavenger. Endocr. J. 1993, 1, 57–60. [Google Scholar]
- Sreejith, P.; Beyo, R.S.; Divya, L.; Vijayasree, A.S.; Manju, M.; Oommen, O.V. Triiodothyronine and melatonin influence antioxidant defense mechanism in a teleost Anabas testudineus (Bloch): in vitro study. Indian J. Biochem. Biophys. 2007, 44, 164–168. [Google Scholar]
- Guerrero, J.M.; Reiter, R.J. Melatonin-immune system relationships. Curr. Top. Med. Chem. 2002, 2, 167–179. [Google Scholar] [CrossRef]
- Ates-Alagoz, Z.; Coban, T.; Suzen, S. A Comparative Study: Evaluation of Antioxidant Activity of Melatonin and Some Indole Derivatives. Med. Chem. Res. 2005, 14, 169–179. [Google Scholar] [CrossRef]
- Suzen, S.; Buyukbingol, E. Anti-Cancer Activity Studies of Indolalthiohydantoin (PIT) on certain cancer cell lines. Farmaco 2000, 55, 246–248. [Google Scholar] [CrossRef]
- Suzen, S.; Buyukbingol, E. Evaluation of Anti-HIV Activity of 5-(2-phenyl-3’- Indolyl)-2-thiohydantoin. Farmaco 1998, 53, 525–527. [Google Scholar] [CrossRef]
- Gulcin, I.; Buyukokuroglu, M.E.; Oktay, M.; Kufrevioglu, O.I. On the in vitro antioxidative properties of melatonin. J. Pineal Res. 2002, 33, 167–171. [Google Scholar] [CrossRef]
- Tan, D.X.; Reiter, R.J.; Manchester, L.C.; Yan, M.T.; El-sawi, M.; Sainz, R.M.; Mayo, J.C.; Kohen, R.; Allegra, M.; Hardeland, R. Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger. Curr. Top. Med. Chem. 2002, 2, 181–197. [Google Scholar] [CrossRef]
- Bozkaya, P.; Dogan, B.; Suzen, S.; Nebioglu, D.; Ozkan, S.A. Determination and investigation of electrochemical behaviour of 2-phenylindole derivatives: discussion on possible mechanistic pathways. Can. J. Anal. Sci. Spec. 2006, 51, 125–139. [Google Scholar]
- Suzen, S.; Demircigil, T.; Buyukbingol, E.; Ozkan, S.A. Electroanalitical Evaluation and Determination of 5-(3’-indolyl)-2-thiohydantoin Derivatives by Voltammetric studies: possible relevance to in vitro metabolism. New J. Chem. 2003, 27, 1007–1011. [Google Scholar] [CrossRef]
- Suzen, S., Ateş-Alagoz; Demircigil, T.; Ozkan, S.A. Synthesis and Analytical Evaluation by Voltammetric Studies of Some New Indole-3-propionic acid Derivatives. Farmaco 2001, 56, 835–840. [Google Scholar] [CrossRef]
- Kruk, I.; Aboul-Enein, H.Y.; Michalska, T.; Lichszteld, K.; Kubasik-Kladna, K.; Olgen, S. In vitro scavenging activity for reactive oxygen species by N-substituted indole-2-carboxylic acid esters. Luminescence 2007, 22, 379–386. [Google Scholar] [CrossRef]
- Zhao, F.; Zai-Qun, L. Indole and its alkyl-substituted derivatives protect erythrocyte and DNA against radical-induced oxidation. J. Biochem. Mol. Toxicol. 2009, 23, 273–279. [Google Scholar] [CrossRef]
- Gulcin, I.; Buyukokuroglu, M.E.; Kufrevioglu, O.I. Metal chelating and hydrogen peroxide scavenging effects of melatonin. J. Pineal Res. 2003, 34, 278–281. [Google Scholar] [CrossRef]
- Talaz, O.; Gulcin, İ.; Goksu, S.; Saracoglu, N. Antioxidant activity of 5,10-dihydroindeno[1,2-b]indoles containing substituents on dihydroindeno part. Bioorg. Med. Chem. 2009, 17, 6583–6589. [Google Scholar] [CrossRef]
- Suzen, S.; Bozkaya, P.; Coban, T.; Nebioglu, D. Investigation of in vitro antioxidant behaviour of some 2-phenylindole derivatives: discussion on possible antioxidant mechanisms and comparison with melatonin. J. Enzyme Inh. Med. Chem. 2006, 21, 405–411. [Google Scholar] [CrossRef]
- Ates-Alagoz, Z.; Coban, T.; Suzen, S. A comparative study: evaluation of antioxidant activity of melatonin and some indole derivatives. Med. Chem. Res. 2005, 14, 169–179. [Google Scholar] [CrossRef]
- Gurkok, G.; Coban, T.; Suzen, S. Melatonin analogue new indole hydrazide/hydrazone derivatives with antioxidant behavior: Synthesis and discussion on structure activity relationships. J. Enzym. Inh. Med. Chem. 2009, 24, 506–515. [Google Scholar] [CrossRef]
- Wieland, H.; Konz, W.; Mittasch, H. Toad positions VII. Constitution of bufotenin and bufotenidine. Justus Liebig Ann. Chem. 1934, 513, 1–25. [Google Scholar] [CrossRef]
- Bulatova, N.N.; Suvorov, N.N. Indole derivatives XXXVI. Reaction of 3-beta-nitrovinylindoles with nucleophilic reagents. Khim. Geterosikli. Soedin. 1969, 5, 813–17. [Google Scholar]
- Baker, J.W.; Happold, F.C.; Walker, N. The tryptophanase-tryptophan reaction: 7. Further evidence regarding the mechanism of the enzymic degradation of tryptophan to indole: criticism of the theory that β-o-aminophenylacetaldehyde is the indole-forming intermediate. Biochem. J. 1946, 40, 420–426. [Google Scholar]
- Song, L.; Xinhua, H.; Zhibing, Z.; Yan, L.; Beifen, S. Preparation of aryl hydrazide compounds as immunosupressives. PCT Int. Appl. WO/2007/036083, 2007. [Google Scholar]
- Niki, E.; Komuro, E.; Takahashi, M.; Urano, S.; Ito, E.; Terao, K.J. Oxidative hemolysis of erythrocytes and its inhibition by free radical scavengers. Biol. Chem. 1988, 263, 19809–19814. [Google Scholar]
- Zhao, F.; Liu, Z.-Q.; Wu, D. Antioxidative effect of melatonin on DNA and erythrocytes against free radical-induced oxidation. Chem. Phys. Lipids 2008, 151, 77–84. [Google Scholar] [CrossRef]
- Suzen, S. Antioxidant Activities of Synthetic Indole Derivatives and Possible Activity Mechanisms. In Topics in Heterocyclic Chemistry; Khan, M.T.H., Ed.; Springer: Berlin, Heidelberg, Germany, 2007; Volume 11, pp. 145–178. [Google Scholar]
- Allegra, M.; Reiter, R.J.; Tan, D.X.; Gentile, C.; Tesoriere, L.; Livrea, M.A. The chemistry of melatonin's interaction with reactive species. J. Pineal Res. 2003, 34, 1–10. [Google Scholar] [CrossRef]
- Kidwai, M.; Negi, N.; Gupta, S.D. Synthesis and antifertility activity of 1,5-diaryl-3 (3'-indolyl)formazans. Chem. Pharm. Bull. (Tokyo) 1994, 42, 2363–2364. [Google Scholar] [CrossRef]
- Lautraite, S.; Bigot-Lasserre, D.; Bars, R.; Carmichael, N. Optimisation of cell-based assays for medium throughput screening of oxidative stress. Toxicol. In Vitro 2003, 17, 207–220. [Google Scholar] [CrossRef]
- Puntarulo, S.; Cederbaum, A.I. Production of Reactive Oxygen Species by Microsomes Enriched in Specific Human Cytochrome P450 Enzymes. Free Radic. Biol. Med. 1998, 24, 1324–1330. [Google Scholar] [CrossRef]
- Gutteridge, J.M.; Quinlan, G.J.; Clark, I.; Halliwell, B. Aluminium salts accelerate peroxidation of membrane lipids stimulated by iron salts. Biochim. Biophys. Acta 1985, 835, 441–447. [Google Scholar] [CrossRef]
- Quinlan, G.J.; Halliwell, B.; Moorhouse, C.P.; Gutteridge, J.M. Action of lead(II) and aluminium (III) ions on iron-stimulated lipid peroxidation in liposomes, erythrocytes and rat liver microsomal fractions. Biochim. Biophys. Acta 1988, 962, 196–200. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Luo, X.Y.; Sun, Y.X.; Chen, Y.P.; Wang, Z.C. Can ginsenosides protect human erythrocytes against free-radical-induced hemolysis? Biochim. Biophys. Acta 2002, 1572, 58–66. [Google Scholar] [CrossRef]
- Sample Availability: Samples of the compounds are available from the authors.
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Shirinzadeh, H.; Eren, B.; Gurer-Orhan, H.; Suzen, S.; Özden, S. Novel Indole-Based Analogs of Melatonin: Synthesis and in Vitro Antioxidant Activity Studies. Molecules 2010, 15, 2187-2202. https://doi.org/10.3390/molecules15042187
Shirinzadeh H, Eren B, Gurer-Orhan H, Suzen S, Özden S. Novel Indole-Based Analogs of Melatonin: Synthesis and in Vitro Antioxidant Activity Studies. Molecules. 2010; 15(4):2187-2202. https://doi.org/10.3390/molecules15042187
Chicago/Turabian StyleShirinzadeh, Hanif, Burcu Eren, Hande Gurer-Orhan, Sibel Suzen, and Seçkin Özden. 2010. "Novel Indole-Based Analogs of Melatonin: Synthesis and in Vitro Antioxidant Activity Studies" Molecules 15, no. 4: 2187-2202. https://doi.org/10.3390/molecules15042187
APA StyleShirinzadeh, H., Eren, B., Gurer-Orhan, H., Suzen, S., & Özden, S. (2010). Novel Indole-Based Analogs of Melatonin: Synthesis and in Vitro Antioxidant Activity Studies. Molecules, 15(4), 2187-2202. https://doi.org/10.3390/molecules15042187