Recent Applications of Ionic Liquids in Separation Technology
Abstract
:1. Introduction
2. General Characteristics of ILs
3. Applications of ILs in Separation Technology
3.1. ILs as mobile phase additives in liquid chromatography
3.1.1. Mechanism of action on separation of ILs as additives
3.1.2. Application of ILs as mobile phase additive
3.2. ILs used as extraction solvents in sample preparation
3.2.1. Extraction mechanisms
3.2.2. Extraction of organic contaminants and metal contaminants
3.2.3. Extraction of bioactive compounds in natural plant
3.3. ILs used as surface-bonded stationary phases
3.3.1. Mechanism of action of ILs as surface-bonded stationary phases
3.3.2. Applications of ILs as surface-bonded stationary phases
3.4. Preparation of supported IL membranes
3.4.1. IL membranes for the selective transport of organic compounds
3.4.2. Gas separation by supported ILs membranes
4. Perspectives
Acknowledgements
References
- Duchet, L.; Legeay, J.C.; Carrié, D.; Paquin, L.; Vanden Eynde, J.J.; Bazureau, J.P. Synthesis of 3,5-disubstituted 1,2,4-oxadiazoles using ionic liquid-phase organic synthesis (IoLiPOS) methodology. Tetrahedron 2010, 66, 986–994. [Google Scholar] [CrossRef]
- Zanoni, M.V.B.; Rogers, E.I.; Hardacre, C.; Compton, R.G. The electrochemical reduction of the purines guanine and adenine at platinum electrodes in several room temperature ionic liquids. Anal. Chim. Acta 2010, 659, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Fontanals, N.; Ronka, S.; Borrull, F.; Trochimczuk, A.W.; Marcé, R.M. Supported imidazolium ionic liquid phases: A new material for solid-phase extraction. Talanta 2009, 80, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Seddon, K.R. Ionic liquids for clean technology. J. Chem. Technol. Biotechnol. 1997, 68, 351–356. [Google Scholar] [CrossRef]
- Kubisa, P. Ionic liquids as solvents for polymerization processes-Progress and challenges. Prog. Polym. Sci. 2009, 34, 1333–1347. [Google Scholar] [CrossRef]
- Yao, C.; Anderson, J.L. Retention characteristics of organic compounds on molten salt and ionic liquid-based gas chromatography stationary phases. J. Chromatogr. A 2009, 1658–1712. [Google Scholar] [CrossRef] [PubMed]
- Ragonese, C.; Tranchida, P.Q.; Sciarrone, D.; Mondello, L. Conventional and fast gas chromatography analysis of biodiesel blends using an ionic liquid stationary phase. J. Chromatogr. A 2009, 1216, 8992–8997. [Google Scholar] [CrossRef] [PubMed]
- He, L.J.; Zhang, W.Z.; Wen, B.; Liu, X.; Jiang, S.X. Separation of Ephedrines Using 1-Butyl-3-methylimidazoliumtetrafluoroborate Ionic Liquids as Eluent in High-performance Liquid Chromatography (HPLC). Chin. Chem. Lett. 2003, 14, 603–604. [Google Scholar]
- Xiao, X.H.; Zhao, L.; Liu, X.; Jiang, S.X. Ionic liquids as additives in high performance liquid chromatography analysis of amines and the interaction mechanism of ionic liquids. Anal. Chim. Acta 2004, 519, 207–211. [Google Scholar] [CrossRef]
- Borissova, M.; Palk, K.; Koel, M. Micellar electrophoresis using ionic liquids. J. Chromatogr. A 2008, 1183, 192–195. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.F.; Gu, Y.L.; Liang, B.; Li, J.B.; Shi, Y.P.; Ou, Q.Y. Dynamically coating the capillary with 1-alkyl-3-methylimidazolium-based ionic liquids for separation of basic proteins by capillary electrophoresis. Anal. Chim. Acta 2003, 479, 249–254. [Google Scholar] [CrossRef]
- Jin, C.H.; Polyakova, Y.; Row, K.H. Effect of Concentration of Ionic Liquids on Resolution of Nucleotides in Reversed-phase Liquid Chromatography. Bull. Korean Chem. Soc. 2007, 28, 601–606. [Google Scholar]
- Polyakova, Y.; Jin, Y.Z.; Zheng, J.Z.; Row, K.H. Effect of Concentration of Ionic Liquid 1-Butyl-3-Methylimidazolium, Tetrafuoroborate, for Retention and Separation of Some Amino and Nucleic Acids. J. Pharm. Biomed. Anal. 2006, 29, 1687–1701. [Google Scholar] [CrossRef]
- Polyakova, Y.; Row, K.H. Retention behaviour of N-CBZ-D- phenylalanine and D-tryptophan: effect of ionic liquid as mobile-phase modifier. Acta Chromatogr. 2006, 17, 210–221. [Google Scholar]
- Zheng, J.Z.; Polyakova, Y.; Row, K.H. Retention factors and resolutions of amino benzoic acid isomers with some ionic liquid. Biotechnol. Bioprocess Eng. 2006, 11, 477–483. [Google Scholar] [CrossRef]
- Polyakova, Y.; Row, K.H. Retention-Eluent Composition Relationships of Some Polar Compounds with Imidazolium Ionic Liquid Modifiers in RP-HPLC. J. Pharm. Biomed. Anal. 2007, 30, 3007–3028. [Google Scholar] [CrossRef]
- Zheng, J.Z.; Row, K.H. Separation of Guanine and Hypoxanthine with Some Ionic Liquids in RP-HPLC. Am. J. Appl. Sci. 2006, 3, 2160–2166. [Google Scholar] [CrossRef]
- Polyakova, Y.; Koo, Y.M.; Row, K.H. Application of liquids as mobile phase modifier in HPLC. Biotechnol. Bioprocess Eng. 2006, 11, 1–6. [Google Scholar] [CrossRef]
- Jin, C.H.; Koo, Y.M.; Choi, D.; Row, K.H. Effect of mobile phase additives on resolution of some nucleic compounds in high performance liquid chromatography. Biotechnol. Bioprocess Eng. 2007, 12, 525–530. [Google Scholar] [CrossRef]
- Tian, M.; Yan, H.; Row, K.H. Solid-phase extraction of caffeine and theophylline from green tea by a new ionic liquid-modified functional polymer sorbent. Anal. Lett. 2010, 43, 110–118. [Google Scholar]
- Tian, M.; Bi, W.; Row, K.H. Solid-phase extraction of liquiritin and glycyrrhizic acid from licorice using ionic liquid-based silica sorbent. J. Sep. Sci. 2009, 32, 4033–4039. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Yan, H.; Row, K.H. Solid-phase extraction of tanshinones from Salvia Miltiorrhiza Bunge using ionic liquid-modified silica sorbents. J. Chromatogr. B 2009, 877, 738–742. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Yan, H.; Row, K.H. Synthesis and evaluation of 1-methylimidazole modified-functional polymer stationary phase. Asian J. Chem. 2010, 22, 2731–2737. [Google Scholar]
- Yang, Q.; Dionysiou, D.D. Photolytic degradation of chlorinated phenols in room temperature ionic liquids. J. Photochem. Photobiol. A: Chem. 2004, 165, 229–240. [Google Scholar] [CrossRef]
- Huddleston, J.G.; Visser, A.E.; Reichert, W.M.; Willauer, H.D.; Broker, G.A.; Rogers, R.D. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem. 2001, 3, 156–164. [Google Scholar] [CrossRef]
- He, L.J.; Zhang, W.Z.; Zhao, L.; Liu, X.; Jiang, S.X. Effect of 1-alkyl-3-methylimidazolium-based ionic liquids as the eluent on the separation of ephedrines by liquid chromatography. J. Chromatogr. A 2003, 1007, 39–45. [Google Scholar] [CrossRef]
- Marszałł, M.P.; Baczek, T.; Kaliszan, R. Reduction of silanophilic interactions in liquid Chromatography with the use of ionic liquids. Anal. Chim. Acta 2005, 547, 172–178. [Google Scholar] [CrossRef]
- Tian, M.; Liu, J.; Row, K.H. Effect of ionic liquids as the mobile phase additives on the HPLC resolution of four active compounds from sophora flavescens Ait. Molecules 2009, 14, 2127–2134. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Vera, M.; Lucena, R.; Cárdenas, S.; Valcárcel, M. Combined use of carbon nanotubes and ionic liquid to improve the determination of antidepressants in urine samples by liquid chromatography. Anal. Bioanal. Chem. 2008, 391, 1139–1145. [Google Scholar] [CrossRef] [PubMed]
- Tang, F.; Tao, L.; Luo, X.; Ding, L.; Guo, M.; Nie, L.; Yao, S. Determination of octopamine, synephrine and tyramine in Citrus herbs by ionic liquid improved ‘green’ chromatography. J. Chromatogr. A 2006, 1125, 182–188. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Zhang, W.; Zhao, L.; Liu, X.; Jiang, S. Effect of 1-alkyl-3-methylimidazolium-based ionic liquids as the eluent on the separation of ephedrines by liquid chromatography. J. Chromatogr. A 2003, 1007, 39–45. [Google Scholar] [CrossRef]
- Zhang, W.; He, L.; Gu, Y.; Liu, X.; Jiang, S. Effect of ionic liquids as mobile phase additives on retention of catecholamines in reversed-phase high-performance liquid chromatography. Anal. Lett. 2003, 36, 827–838. [Google Scholar] [CrossRef]
- Flieger, J. Effect of ionic liquids as mobile-phase additives on chromatographic parameters of neuroleptic drugs in reversed-phase high-performance liquid chromatography. Anal. Lett. 2009, 42, 1632–1649. [Google Scholar] [CrossRef]
- Herrera-Herrera, A.V.; Hernández-Borges, J.; Rodríguez-Delgado, M.Á. Ionic liquids as mobile phase additives for the high-performance liquid chromatographic analysis of fluoroquinolone antibiotics in water samples. Anal. Bioanal. Chem. 2008, 392, 1439–1446. [Google Scholar] [CrossRef] [PubMed]
- Martín-Calero, A.; Pino, V.; Ayala, J.H.; González, V.; Afonso, A.M. Ionic liquids as mobile phase additives in high-performance liquid chromatography with electrochemical detection: Application to the determination of heterocyclic aromatic amines in meat-based infant foods. Talanta 2009, 79, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Angel, M.J.; Carda-Broch, S.; Berthod, A. Ionic liquids versus triethylamine as mobile phase additives in the analysis of β-blockers. J. Chromatogr. A 2006, 1119, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Row, K.H. Separation of Guanine and Hypoxanthine with Some Ionic Liquids in RP-HPLC. Am. J. Appl. Sci. 2006, 3, 2160–2166. [Google Scholar] [CrossRef]
- Xiao, X.H.; Zhao, L.; Liu, X.; Jiang, S.X. Ionic liquids as additives in high performance liquid chromatography analysis of amines and the interaction mechanism of ionic liquids. Anal. Chim. Acta 2004, 519, 207–211. [Google Scholar] [CrossRef]
- Marszałł, M.P.; Baczek, T.; Kaliszan, R. Evaluation of the silanol-suppressing potency of ionic liquids. J. Sep. Sci. 2006, 29, 1138–1145. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.M.; Han, Y.; Zhou, Y.; Meng, X.; Li, Z.Y.; Zi, M.; Chang, Y.X. (R)-N,N,N-Trimethyl-2-Aminobutanol-Bis(Trifluoromethane-Sulfon)Imidate Chiral Ionic Liquid Used as Chiral Selector in HPCE, HPLC, and CGC. Anal. Lett. 2006, 39, 1439–1449. [Google Scholar] [CrossRef]
- Huddleston, J.G.; Visser, A.E.; Reichert, W.M.; Willauer, H.D.; Broker, G.A.; Rogers, R.D. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem. 2001, 3, 156–164. [Google Scholar] [CrossRef]
- Carda-Broch, S.; Berthod, A.; Armstrong, D.W. Solvent properties of the 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid. Anal. Bioanal. Chem. 2003, 375, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhao, E.; Zhu, W.; Gao, H.; Zhou, Z. Determination of four heterocyclic insecticides by ionic liquid dispersive liquid–liquid microextraction in water samples. J. Chromatogr. A 2009, 1216, 885–891. [Google Scholar] [CrossRef] [PubMed]
- Pena, M.T.; Casais, M.C.; Mejuto, M.C.; Cela, R. Development of an ionic liquid based dispersive liquid–liquid microextraction method for the analysis of polycyclic aromatic hydrocarbons in water samples. J. Chromatogr. A 2009, 1216, 6356–6364. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Pohl, J.; Engel, R.; Rothman, L.; Thomas, M. Preparation of ionic liquid based solid-phase microextraction fiber and its application to forensic determination of methamphetamine and amphetamine in human urine. J. Chromatogr. A 2009, 1216, 4824–4830. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Zhang, X.; Xiao, J. Ultrasound-assisted ionic liquid dispersive liquid-phase micro-extraction: A novel approach for the sensitive determination of aromatic amines in water samples. J. Chromatogr. A 2009, 1216, 4361–4365. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Luo, X.; Xie, H.; Wang, C.; Jiang, X.; Lu, K. Ionic liquid-based dispersive liquid–liquid microextraction followed high-performance liquid chromatography for the determination of organophosphorus pesticides in water sample. Anal. Chim. Acta 2009, 655, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.; Zhou, Q.; Xie, G.; Xiao, J. Enrichment and sensitive determination of dichlorodiphenyltrichloroethane and its metabolites with temperature controlled ionic liquid dispersive liquid phase microextraction prior to high performance liquid phase chromatography. Anal. Chim. Acta 2009, 651, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Abdolmohammad-Zadeh, H.; Sadeghi, G.H. A novel microextraction technique based on 1-hexylpyridinium hexafluorophosphate ionic liquid for the preconcentration of zinc in water and milk samples. Anal. Chim. Acta 2009, 649, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Manzoori, J.L.; Amjadi, M.; Abulhassani, J. Ultra-trace determination of lead in water and food samples by using ionic liquid-based single drop microextraction-electrothermal atomic absorption spectrometry. Anal. Chim. Acta 2009, 644, 48–52. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.; Anderson, J.L. Dispersive liquid–liquid microextraction using an in situ metathesis reaction to form an ionic liquid extraction phase for the preconcentration of aromatic compounds from water. Anal. Bioanal. Chem. 2009, 395, 1491–1502. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Cai, S.; Hu, W.; Chen, H.; Liu, H. Ionic liquid-based ultrasound-assisted dispersive liquid–liquid microextraction combined with electrothermal atomic absorption spectrometry for a sensitive determination of cadmium in water samples. Spectroc. Acta Pt. B-Atom. Spectr. 2009, 64, 666–671. [Google Scholar] [CrossRef]
- Cruz-Vera, M.; Lucena, R.; Cárdenas, S.; Valcárcel, M. Determination of phenothiazine derivatives in human urine by using ionic liquid-based dynamic liquid-phase microextraction coupled with liquid chromatography. J. Chromatogr. B 2009, 877, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Mao, T.; Hao, B.; He, J.; Li, W.; Li, S.; Yu, Z. Ultrasound assisted ionic liquid dispersive liquid phase extraction of lovastatin and simvastatin: A new pretreatment procedure. J. Sep. Sci. 2010, 32, 3029–3033. [Google Scholar] [CrossRef] [PubMed]
- Abulhassani, J.; Manzoori, J.L.; Amjadi, M. Hollow fiber based-liquid phase microextraction using ionic liquid solvent for preconcentration of lead and nickel from environmental and biological samples prior to determination by electrothermal atomic absorption spectrometry. J. Hazard. Mater. 2009, 81, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Du, P.; Chen, J.; Hu, S.; Li, S.; Liu, H. Separation and preconcentration system based on ultrasonic probe-assisted ionic liquid dispersive liquid–liquid microextraction for determination trace amount of chromium(VI) by electrothermal atomic absorption spectrometry. Talanta 2010, 81, 176–179. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Ye, C. Ionic liquid for improved single-drop microextraction of aromatic amines in water samples. Microchim. Acta 2008, 162, 153–159. [Google Scholar] [CrossRef]
- Cheng, D.; Chen, X.; Shu, Y.; Wang, J. Selective extraction/isolation of hemoglobin with ionic liquid 1-butyl-3-trimethylsilylimidazolium hexafluorophosphate (BtmsimPF6). Talanta 2008, 75, 1270–1278. [Google Scholar] [CrossRef] [PubMed]
- Basheer, C.; Alnedhary, A.A.; Madhava Rao, B.S.; Balasubramanian, R.; Lee, H.K. Ionic liquid supported three-phase liquid–liquid–liquid microextraction as a sample preparation technique for aliphatic and aromatic hydrocarbons priorto gas chromatography-mass spectrometry. J. Chromatogr. A 2008, 1210, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Pino, V.; Anderson, J.L.; Ayala, J.H.; González, V.; Afonso, A.M. The ionic liquid 1-hexadecyl-3-methylimidazolium bromide as novel extracting system for polycyclic aromatic hydrocarbons contained in sediments using focused microwave-assisted extraction. J. Chromatogr. A 2008, 1182, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Pei, Y.; Wu, K.; Wang, J.; Fan, J. Recovery of Furfural from Aqueous Solution by Ionic Liquid Based Liquid–Liquid Extraction. Sep. Sci. Technol. 2008, 43, 2090–2102. [Google Scholar] [CrossRef]
- Zhao, F.; Li, J.; Zeng, B. Coupling of ionic liquid-based headspace singledrop microextraction with GC for sensitive detection of phenols. J. Sep. Sci. 2008, 31, 3045–3049. [Google Scholar] [CrossRef] [PubMed]
- Vidal, L.; Psillakis, E.; Domini, C.E.; Grané, N.; Marken, F.; Canals, A. An ionic liquid as a solvent for headspace single drop microextraction of chlorobenzenes from water samples. Anal. Chim. Acta 2007, 584, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wei, Q.; Yuan, R.; Zhou, X.; Liu, H.; Shan, H.; Song, Q. A new room temperature ionic liquid 1-butyl-3-trimethylsilylimidazolium hexafluorophosphate as a solvent for extraction and preconcentration of mercury with determination by cold vapor atomic absorption spectrometry. Talanta 2007, 71, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Vidal, S.T.M.; Correla, M.J.N.; Marques, M.M.; Ismael, M.R.; Reis, M.T.A. Studies on the use of ionic liquids as potential extractants of phenolic compounds and metal ions. Sep. Sci. Technol. 2004, 39, 2155–2169. [Google Scholar] [CrossRef]
- Fan, J.; Fan, Y.; Pei, Y.; Wu, K.; Wang, J.; Fan, M. Solvent extraction of selected endocrine-disrupting phenols using ionic liquids. Sep. Purif. Technol. 2008, 61, 324–331. [Google Scholar] [CrossRef]
- Peng, J.; Liu, J.; Hu, X.; Jiang, G. Direct determination of chlorophenols in environmental water samples by hollow fiber supported ionic liquid membrane extraction coupled with high-performance liquid chromatography. J. Chromatogr. A 2007, 1139, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.F.; Liu, J.F.; Jiang, G.B.; Tai, C.; Huang, M.J. Ionic liquid for high temperature headspace liquid-phase microextraction of chlorinated anilines in environmental water samples. J. Chromatogr. A 2005, 1072, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Bai, H.; Xie, G.; Xiao, G. Temperature-controlled ionic liquid dispersive liquid phase micro-extraction. J. Chromatogr. A 2008, 1177, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Ohno, H.; Fukomoto, K. Amino acid ionic liquids. Acc. Chem. Res. 2007, 40, 1122–1129. [Google Scholar] [CrossRef] [PubMed]
- Visser, A.E.; Swatloski, R.P.; Reichert, W.M.; Griffin, S.T.; Rogers, R.D. Traditional Extractants in Nontraditional Solvents: Groups 1 and 2 Extraction by Crown Ethers in Room-Temperature Ionic Liquids. Ind. Eng. Chem. Res. 2001, 39, 3596–3604. [Google Scholar] [CrossRef]
- Visser, A.E.; Swatloski, R.P.; Reichert, W.M.; Mayton, R.; Sheff, S.; Wierzbicki, A.; Davis, J.H.; Rogers, R.D. Task-specific ionic liquids for the extraction of metal ions from aqueous solutions. Chem. Commun. 2001, 135–136. [Google Scholar] [CrossRef]
- Visser, A.E.; Swatloski, R.P.; Reichert, W.M.; Mayton, R.; Sheff, S.; Wierzbicki, A.; Davis, J.H.; Rogers, R.D. Task-specific ionic liquids incorporating novel cations for the coordinating and extraction of Hg2+ and Cd2+: synthesis, characterization, and extraction studies. Environ. Sci. Technol. 2002, 36, 2523–2529. [Google Scholar] [CrossRef] [PubMed]
- Ouadi, A.; Gadenne, B.; Hesemann, P.; Moreau, J.E.; Billard, I.; Gaillard, C.; Mekki, S.; Moutiers, G. Task-specific ionic liquids bearing 2-hydroxybenzylamine units: Synthesis and americiumextraction studies. Chem. Eur. J. 2006, 12, 3074–3081. [Google Scholar] [CrossRef] [PubMed]
- Wei, G.; Yang, Z.; Chen, C. Room Temperature Ionic Liquid as a Novel Medium for Liquid/liquid Extraction of Metal Ions. Anal. Chim. Acta 2003, 488, 183–192. [Google Scholar] [CrossRef]
- Germani, R.; Mancini, M.V.; Savellia, G.; Spreti, N. Mercury extraction by ionic liquids: temperature and alkyl chain length effect. Tetrahedron Lett. 2007, 48, 1767–1769. [Google Scholar] [CrossRef]
- Du, F.Y.; Xiao, X.H.; Luo, X.J.; Li, G.K. Application of ionic liquids in the microwave-assisted extraction of polyphenolic compounds from medicinal plants. Talanta 2009, 78, 1177–1184. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Geng, Y.; Duan, W.; Wang, D.; Fu, M.; Wang, X. Ionic liquid-based ultrasound-assisted extraction of fangchinoline and tetrandrine from Stephaniae tetrandrae. J. Sep. Sci. 2009, 32, 3550–3554. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Ye, X.; Lu, Y.; Yu, Y.; Mo, W. Ionic liquid-based ultrasonic-assisted extraction of piperine from white pepper. Anal. Chim. Acta 2009, 640, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Lu, Y.; Hu, R.; Chen, J.; Zhang, Z.; Pan, Y. Application of ionic liquids based microwave-assisted extraction of three alkaloids N-nornuciferine, O-nornuciferine, and nuciferine from lotus leaf. Talanta 2010, 80, 1292–1297. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.; Sun, S.; Wang, Z.; Cheng, J.; Sun, Y.; Wang, L.; Zhang, Y.; Zhang, H.; Yu, A. Microwave extraction of essential oils from dried fruits of Illicium verum Hook. f. and Cuminum cyminum L. using ionic liquid as the microwave absorption medium. J. Sep. Sci. 2009, 32, 3544–3549. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Xing, H.; Cao, Y.; Su, B.; Yang, Y.; Ren, Q. Selective separation of tocopherol homologues by liquid−liquid extraction using ionic liquids. Ind. Eng. Chem. Res. 2009, 48, 6417–6422. [Google Scholar] [CrossRef]
- Lu, Y.; Ma, W.; Hu, R.; Dai, X.; Pan, Y. Ionic liquid-based microwave-assisted extraction of phenolic alkaloids from the medicinal plant Nelumbo nucifera Gaertn. J. Chromatogr. A 2008, 1208, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Zhang, W.; Cao, S. Extraction of ferulic acid and caffeic acid with ionic liquids. Chin. J. Anal. Chem. 2007, 35, 1726–1730. [Google Scholar] [CrossRef]
- Du, F.Y.; Xiao, X.H.; Li, G.K. Microwave-assisted extraction of alkaloids in Lycoris Radiata using ionic liquids solution. Chinese J. Anal. Chem. 2007, 35, 1570–1574. [Google Scholar]
- Du, F.Y.; Xiao, X.H.; Li, G.K. Application of ionic liquids in the microwave-assisted extraction of trans-resveratrol from Rhizma Polygoni Cuspidati. J. Chromatogr. A 2007, 1140, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Absalan, G.; Akhond, M.; Sheikhian, L. Extraction and high performance liquid chromatographic determination of 3-indole butyric acid in pea plants by using imidazolium-based ionic liquids as extractant. Talanta 2008, 77, 407–411. [Google Scholar] [CrossRef] [PubMed]
- Ravelo-Pérez, L.M.; Hernández-Borges, J.; Herrera-Herrera, A.V.; Rodríguez-Delgado, M.Á. Pesticide extraction from table grapes and plums using ionic liquid based dispersive liquid–liquid microextraction. Anal. Bioanal. Chem. 2009, 395, 2387–2395. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Chen, M.; Shentu, C.; El-Sepai, F.; Wang, K.; Zhu, Y.; Ye, M. Ionic liquids extraction of Para Red and Sudan dyes from chilli powder, chilli oil and food additive combined with high performance liquid chromatography. Anal. Chim. Acta 2009, 650, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.Q.; Stalcup, A.M. Mobile phase effects on retention on a new butylimidazolium-based high-performance liquid chromatographic stationary phase. J. Chromatogr. A 2006, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.D.; Jiang, S.X.; Liu, X. N-Methylimidazolium anion-exchange stationary phase for high-performance liquid chromatography. J. Chromatogr. A 2006, 1103, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Baltazar, Q.Q.; Leininger, S.K.; Anderson, J.L. Binary ionic liquid mixtures as gas chromatography stationary phases for improving the separation selectivity of alcohols and aromatic compounds. J. Chromatogr. A 2008, 1182, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Ragonese, C.; Tranchida, P.Q.; Sciarrone, D.; Mondello, L. Conventional and fast gas chromatography analysis of biodiesel blends using an ionic liquid stationary phase. J. Chromatogr. A 2009, 1216, 8992–8997. [Google Scholar] [CrossRef] [PubMed]
- Chou, F.; Wang, W.; Wei, G.T. Using subcritical/supercritical fluid chromatography to separate acidic, basic, and neutral compounds over an ionic liquid-functionalized stationary phase. J. Chromatogr. A 2009, 3594–3599. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Yan, H.; Row, K.H. Solid-phase extraction of tanshinones from Salvia Miltiorrhiza Bunge using ionic liquid-modified silica sorbents. J. Chromatogr. B 2009, 877, 738–742. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Bi, W.; Row, K.H. Solid-phase extraction of liquiritin and glycyrrhizic acid from licorice using ionic liquid-based silica sorbent. J. Sep. Sci. 2009, 32, 4033–4039. [Google Scholar] [CrossRef] [PubMed]
- Bi, W.; Row, K.H. Comparison of different silica-based imidazolium stationary phases for LC in separation of alkaloids. Chromatographia 2010, 71, 25–30. [Google Scholar] [CrossRef]
- Liu, S.J.; Zhou, F.; Xiao, X.H.; Zhao, L.; Liu, X.; Jiang, S.X. Surface confined ionic liquid—a new stationary phase for the separation of ephedrines in high-performance liquid chromatography. Chin. Chem. Lett. 2004, 15, 1060–1062. [Google Scholar]
- Chitta, K.R.; Van Meter, D.S.; Stalcup, A.M. Separation of peptides by HPLC using a surface-confined ionic liquid stationary phase. Anal. Bioanal. Chem. 2010, 396, 775–781. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.; Jiang, S.; Liu, X.; Zhao, L. Novel imidazolium stationary phase for high-performance liquid chromatography. J. Chromatogr. A 2006, 1116, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Yan, H.; Row, K.H. Solid-phase extraction of caffeine and theophylline from green tea by a new ionic liquid-modified functional polymer sorbent. Anal. Lett. 2010, 43, 110–118. [Google Scholar]
- Zhao, F.; Meng, Y.; Anderson, J.L. Polymeric ionic liquids as selective coatings for the extraction of esters using solid-phase microextraction. J. Chromatogr. A 2008, 1208, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Van Meter, D.S.; Stuart, O.D.; Carle, A.B., Stalcup; Stalcup, A.M. Characterization of a novel pyridinium bromide surface confined ionic liquid stationary phase for high-performance liquid chromatography undernormal phase conditions via linear solvation energy relationships. J. Chromatogr. A 2008, 1191, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.D.; Jiang, Q.; Wei, Z.; Wang, X.S.; Liu, X.; Jiang, S.X. Preparation and evaluation of a silica-based 1-alkyl-3-(propyl-3-sulfonate) imidazolium zwitterionic stationary phase for high-performance liquid chromatography. J. Chromatogr. A 2007, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.J.; Zhou, F.; Xiao, X.H.; Zhao, L.; Liu, X.; Jiang, S.X. Surface confined ionic liquid - A new stationary phase for the separation of ephedrines in high-performance liquid chromatography. Chin. Chem. Lett. 2004, 15, 1060–1062. [Google Scholar]
- Wang, Q.; Baker, G.A.; Baker, S.N.; Colón, L.A. Surface confined ionic liquid as a stationary phase for HPLC. Analyst 2006, 131, 1000–1005. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.F.; Li, N.; Jiang, G.B.; Liu, J.M.; Jonsson, J.A.; Wen, M.J. Disposable ionic liquid coating for headspace solid-phase microextraction of benzene, toluene, ethylbenzene, and xylenes in paints followed by gas chromatography–flame ionization detection. J. Chromatogr. A 2005, 1066, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, Y.N.; Huang, P.C.; Sun, I.W.; Whang, T.J.; Hsu, C.Y.; Huang, H.H.; Kuei, C.H. Nafion membrane-supported ionic liquid–solid phase microextraction for analyzing ultra trace PAHs in water samples. Anal. Chim. Acta 2006, 557, 321–328. [Google Scholar] [CrossRef]
- Li, J.D.; Cai, Y.Q.; Shi, Y.L.; Mou, S.F.; Jiang, G.B. Analysis of phthalates via HPLC-UV in environmental water samples after concentration by solid-phase extraction using ionic liquid mixed hemimicelles. Talanta 2008, 74, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Branco, L.C.; Crespo, J.G.; Afonso, C.A.M. Highly selective transport of organic compounds by using supported liquid membranes based on ionic liquids. Angew. Chem. Int. Ed. 2002, 41, 2771–2773. [Google Scholar] [CrossRef]
- Raeissia, S.; Peters, C.J. A potential ionic liquid for CO2-separating gas membranes: selection and gas solubility studies. Green Chem. 2009, 11, 185–192. [Google Scholar] [CrossRef]
- Hanioka, S.; Maruyamaa, T.; Sotani, T.; Teramoto, M.; Matsuyamaa, H.; Nakashima, K.; Hanaki, M.; Kubota, F.; Goto, M. CO2 separation facilitated by task-specific ionic liquids using a supported liquid membrane. J. Membr. Sci. 2008, 314, 1–4. [Google Scholar] [CrossRef]
- Scovazzo, P. Determination of the upper limits, benchmarks, and critical properties for gas separations using stabilized room temperature ionic liquid membranes (SILMs) for the purpose of guiding future research. J. Membr. Sci. 2009, 343, 199–211. [Google Scholar] [CrossRef]
- Bara, J.E.; Gabrielb, C.J.; Carlisle, T.K.; Campera, D.E.; Finotello, A.; Gina, D.L.; Noblea, R.D. Gas separations in fluoroalkyl-functionalized room-temperature ionic liquids using supported liquid membranes. Chem. Eng. J. 2009, 147, 43–50. [Google Scholar] [CrossRef]
- Bara, J.E.; Noble, R.D.; Gin, D.L. Effect of “free” cation substituent on gas separation performance of polymer-room-temperature ionic liquid composite membranes. Ind. Eng. Chem. Res. 2009, 48, 4607–4610. [Google Scholar] [CrossRef]
- Bara, J.E.; Hatakeyama, E.S.; Gin, D.L.; Noble, R.D. Improving CO2 permeability in polymerized room-temperature ionic liquid gas separation membranes through the formation of a solid composite with a room-temperature ionic liquid. Polym. Adv. Technol. 2008, 19, 1415–1420. [Google Scholar] [CrossRef]
- Neves, L.A.; Nemestóthy, N.; Alves, V.D.; Cserjési, P.; Bélafi-Bakó, K.; Coelhoso, I.M. Separation of biohydrogen by supported ionic liquid membranes. Desalination 2009, 240, 311–315. [Google Scholar] [CrossRef]
- Matsumoto, M.; Ohtani, T.; Kondo, K. Comparison of solvent extraction and supported liquid membrane permeation using an ionic liquid for concentrating penicillin. G. J. Membr. Sci. 2007, 289, 92–96. [Google Scholar] [CrossRef]
- Izák, P.; Ruth, W.; Fei, Z.; Dyson, P.J.; Kragl, U. Selective removal of acetone and butan-1-ol from water with supported ionic liquid–polydimethylsiloxane membrane by pervaporation. Chem. Eng. J. 2008, 139, 318–321. [Google Scholar] [CrossRef]
- Peng, J.; Liu, J.; Hu, X.; Jiang, G. Direct determination of chlorophenols in environmental water samples by hollow fiber supported ionic liquid membrane extraction coupled with high-performance liquid chromatography. J. Chromatogr. A 2007, 1139, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.I.; Kim, B.S.; Byun, Y.H.; Lee, S.H.; Lee, E.W.; Lee, J.M. Preparation of supported ionic liquid membranes (SILMs) for the removal of acidic gases from crude natural gas. Desalination 2009, 236, 342–348. [Google Scholar] [CrossRef]
- Branco, L.C.; Crespo, J.G.; Afonso, C.A.M. Highly selective transport of organic compounds by using supported liquid membranes based on ionic liquids. Angew. Chem. Int. Ed. 2002, 41, 2771–2773. [Google Scholar] [CrossRef]
- Miyako, E.; Maruyama, T.; Kamiya, N.; Goto, M. Use of ionic liquids in a lipase-facilitated supported liquid membrane. Biotechnol. Lett. 2003, 25, 805–808. [Google Scholar] [CrossRef] [PubMed]
Chemical formula | Abbreviation | Melting point, ºC | Density (g mL-1), 25 ºC | Viscosity (cP), 25 ºC | Molecular weight | |
---|---|---|---|---|---|---|
Cation | Anion | |||||
[BF4]- | [EMIM][BF4] | 6 | 1.248 | 66 | 197.8 | |
[PF6]- | [EMIM][PF6] | 58-62 | 1.373 | 450 | 256.13 | |
[BF4]- | [BMIM][BF4] | -82 | 1.208 | 233 | 225.80 | |
[PF6]- | [BMIM][PF6] | 10 | 1.373 | 400 | 284.18 | |
[Br]- | [BMIM]Br | 60 | 1.134 | Solid | 218.9 | |
[Cl]- | [BMIM]Cl | 89 | 1.120 | Solid | 146.50 | |
[CF3SO3]- | [BMIM][CF3SO3] | 16 | 1.290 | 90 | 260.0 | |
[(CF3SO2)2N]- | [BMIM] [(CF3SO2)2N] | -4 | 1.420 | 52 | 487.9 | |
[NTfO2]- | [BMIM] [NTfO2] | -8 | 1.404 | 48 | 433.0 | |
[BF4]- | [AMIM][BF4] | -88 | 1.231 | 321 | 240.02 | |
[BF4]- | [HMIM][BF4] | -82 | 1.075 | 211 | 254.08 | |
[PF6]- | [HMIM][PF6] | -61 | 1.304 | 800 | 312.00 | |
[BF4]- | [OMIM][BF4] | -79 | 1.11 | 440 | 281.8 | |
[Cl]- | [OMIM][Cl] | 0 | 1.000 | 16,000 | 230.50 | |
[NTfO2]- | [MPPyr] [NTfO2]- | 0 | 1.44 | 39 | 416 | |
[HCOO]- | BAF | -10 | 0.99 | 11.5 | 91 | |
[NTfO2]- | [BMPyrrol] [NTfO2] | -50 | 1.4 | 71 | 422 |
Target compounds | Mobile phase | Ionic liquid additive | Ref. |
---|---|---|---|
Nucleotides | Methanol /water (10:90, v/v) | 13.0 mM of [BMIM][BF4] | [12] |
Amino acid and Nucleic acid | Methanol /water (65:35, v/v) | 2.0 mM of [BMIM][BF4] | [13] |
N-CBZ-D-Phenylalanine, and D-tryptophan | Acetonitrile/water (50:50, v/v) | 10.0 mM of [BMIM][BF4] | [14] |
Amino benzoic acids isomers | Methanol /water (25:75, v/v) | 13.0 mM of [BMIM][BF4] | [15] |
Polar compounds | Methanol /water (65:35, v/v) | 1.86 mM of [EMIM][MS] | [16] |
Matrine, oxymatrine, sophoridine, Sophocarpine | Methanol /water (45:55, v/v) at pH 3.0 | 0.1 mM of [BMIM][BF4] | [28] |
Antidepressants | NaH2PO4/ acetonitrile / methanol (70:25:5,v/v/v) | 20.0 mM of [BMIM][BF4] | [29] |
Octopamine, synephrine and tyramine | Aqueous solution at pH 4.0 | 32 mM of [EMIM][BF4] | [30] |
Norephedrine, ephedrine, pseudoephedrine and methylephedrine | Aqueous solution at pH 3.0 | 5.2-20.8 mM of [BMIM][BF4] | [31] |
Norepinephrine, epinephrine, dopamine | Aqueous solution at pH 3.0 | 25 mM of [BMIM][BF4] | [32] |
Neuroleptic drugs | NaH2PO4/ acetonitrile (60:40,v/v) | 30.0 mM of [BMIM][PF6] | [33] |
Fluoroquinolone antibiotics | 10 mM ammonium acetate/acetonitrile(87:13,v/v) | 5.0 mM of [BMIM][BF4] | [34] |
Heterocyclic aromatic amines | Acetonitrile/water (19:81, v/v) | 1.0 mM of [BMIM][BF4] | [35] |
Seven β-blockers | Acetonitrile/water (30:70, v/v) | 6.0 mM of [BMIM][BF4] | [36] |
Guanine and hypoxanthine | Methanol /water (40:60, v/v) at pH 3.0 | 2.0 mM of [OMIM][MS] | [37] |
Source | Target compounds | Ionic liquid | Extraction method | Ref. |
---|---|---|---|---|
Tap, bottled, fountain, well, river, rainwater, treated and raw wastewater | 18 polycyclic aromatic hydrocarbons | [OMIM][PF6] | DLLME | [43] |
Human urine | Methamphetamine, amphetamine | [EeMIM][NTf2] | SPME | [44] |
Snow, river and brook water. | Four aromatic amines | [HMIM][PF6] | USA-DLLME | [45] |
Tap, lake and fountain water | Fipronil, Chlorfenapyr, Buprofezin, and Hexythiazox | [HMIM][PF6] | DLLME | [46] |
Tap, well, rain and Yellow River water | Organophosphorus pesticides | [OMIM][PF6] | DLLME | [47] |
Everglade, river, reservoir and snow | Dichlorodiphenyltrichloroethane and its metabolites | [HMIM][PF6] | DLLME | [48] |
Water and milk | Zinc | [HPy][PF6] | DLLME | [49] |
NIST SRM 1643e, NIST SRM 1549 | Lead | [BMIM][PF6] | SDME | [50] |
Tap, well, river, and creek water | 13 aromatic compounds | [BMIM][NTf2] | DLLME | [51] |
Tap, well, Changjiang river, East lake, rain water | Cadmium | [HMIM][PF6] | USA-DLLME | [52] |
Human urine | Seven phenothiazines derivatives | [BMIM][PF6] | LLE | [53] |
East Lake and Yangtze River | Lovastatin and simvastatin | [HMIM][PF6] | USA-DLLME | [54] |
Tap, river, underground water | Lead and nickel | [HMIM][PF6] | HF-LPME | [55] |
Tap and lake water from South Lake | Chromium(VI) | [HMIM][PF6] | DLLME | [56] |
Tap water, well water and rain | 1-Naphthylamine, N,N-Dimethylaniline,Diphenylamine | [BMIM][PF6] | LLE | [57] |
Human whole blood | Hemoglobin | [BTMSIM][PF6] | LLE | [58] |
Storm water | Aliphatic and aromatic hydrocarbons | [BMIM][PF6] | HFM-LLLME | [59] |
Sediments | Polycyclic aromatic hydrocarbons | [HDMIM][Br] | MAE | [60] |
Furfural and acetic acid aqueous solution | Furfural | [HMIM][PF6] | LLE | [61] |
East Lake and waste water | Phenols | [OMIM][PF6] | SDME | [62] |
River water and effluentwater | Chlorobenzenes | [BMIM][PF6] | SDME | [63] |
Taihu Lake | Inorganic mercury | [BTMSIM][PF6] | LLE | [64] |
Source | Target compounds | Ionic liquid | Extraction Method | Ref. |
---|---|---|---|---|
Psidium guajava Linn. leaves and Smilax china tubers | Polyphenolic compounds | [BMIM]Br | MAE | [77] |
Stephaniae tetrandrae | Fangchinoline, tetrandrine | [BMIM][BF4] | UAE | [78] |
lotus leaf | N-nornuciferine, O-nornuciferine, nuciferine | [HMIM]Br | MAE | [79] |
White pepper | Piperine | [BMIM][BF4] | UAE | [80] |
Fruits of Illicium verum Hook. f. and Cuminum cyminum L. | Essential oils | [BMIM]PF6 | MAE | [81] |
Mixed Tocopherol | Tocopherol Homologues | [BMIM]Cl | LLE | [82] |
Nelumbo nucifera Gaertn | Phenolic alkaloids | [BMIM][BF4] | MAE | [83] |
- | Ferulic acid, caffeic acid | [BMIM][PF6] | LLE | [84] |
Lycoris Radiata | Lycorine, lycoramine, galanthamine | [BMIM] CI | MMAE | [85] |
Rhizma Polygoni Cuspidati | trans-Resveratrol | [BMIM]Br | MAE | [86] |
Pea plants | 3-Indole butyric acid | [BMIM][PF6] | LLE | [87] |
Table grape and plum samples | Thiophanate-methyl, carbofuran,carbaryl, iprodione, hexythiazox, fenazaquin | [HMIM][PF6] | DLLME | [88] |
Chilli powder, chilli oil and food additive | Para Red and Sudan dyes | [OMIM][PF6] | LE | [89] |
Target compounds | Ionic liquids | Application | Ref. |
---|---|---|---|
Alcohols and aromatic compounds | [BMIM]Cl, [BMIM][NTf2] | GC stationary phases | [92] |
Fatty acid methyl esters | 1,9-di(3-vinyl-imidazolium)nonane bis(trifluoromethyl)sulfonylimidate | GC stationary phases | [93] |
Acidic, basic, neutral compounds | 1-octyl-3-propylimidazolium chloride | IL-based silica sorbent for SPE | [94] |
Tanshinones | 1-methylimidazole | [95] | |
Liquiritin, glycyrrhizic acid | 2-ethyl-4-methylimidazole | [96] | |
Caffeine, theophylline theobromine | Imidazole, 1-methylimidazole, 2-ethyl-4-methylimidazole | IL-based silica sorbent as HPLC stationary phase | [97] |
Ephedrines | [AHIm][BF4] | [98] | |
Peptides | Butyl-imidazol | [99] | |
Inorganic anions | Imidazolium functionalized silica | [100] | |
Caffeine, theophylline | 1-methylimidazole | IL-based polymer sorbent for SPE | [101] |
Esters | Bis[(trifluoromethyl)sulfonyl]imide | [102] |
Source | IL membrane | Application | Ref. |
---|---|---|---|
Steam reforming/water gas | [CnMIM][Tf2N] | Separating CO2 from H2 | [111] |
CO2/CH4 gas mixture | [C3NH2MIM][Tf2N], [C3NH2mim][CF3SO3] | Transport of CO2 | [112] |
CO2, N2, and CH4 | [EMIM][dca] | Separation t of CO2 | [113] |
CO2, O2, N2 and CH4 | [HMIM][Tf2N], [OMIM][Tf2N] | Separation t of CO2 | [114] |
CO2, N2, and CH4 | [EMIM][Tf2N] | Separation of CO2 | [115] |
CO2/CH4 gas mixture | [BEIM][PF6] | Separation of CO2 | [116] |
Biohydrogen | [C3NH2MIM][CF3SO3] | Separation of biohydrogen | [117] |
Penicillin G | TOMAC | Concentrating penicillin G | [118] |
Acetone and butan-1-ol | [EEIM][PF6] | Separation of ternary mixtures | [119] |
Chlorophenols | [OMIM][PF6] | Purification of water | [120] |
Acidic gases | [BMIM][BF4] | Get rid of the acidic gases | [121] |
Organic isomeric amines | [BMIM][PF6] | Selective separation | [122] |
Organic acids, such as 4-phenoxybutyric acid, 3-phenoxypropionic acid and so on | [BMIM][PF6] | Lipase-facilitated transport | [123] |
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Han, D.; Row, K.H. Recent Applications of Ionic Liquids in Separation Technology. Molecules 2010, 15, 2405-2426. https://doi.org/10.3390/molecules15042405
Han D, Row KH. Recent Applications of Ionic Liquids in Separation Technology. Molecules. 2010; 15(4):2405-2426. https://doi.org/10.3390/molecules15042405
Chicago/Turabian StyleHan, Dandan, and Kyung Ho Row. 2010. "Recent Applications of Ionic Liquids in Separation Technology" Molecules 15, no. 4: 2405-2426. https://doi.org/10.3390/molecules15042405
APA StyleHan, D., & Row, K. H. (2010). Recent Applications of Ionic Liquids in Separation Technology. Molecules, 15(4), 2405-2426. https://doi.org/10.3390/molecules15042405