Essential Oil of Myrtus communis L. as a Potential Antioxidant and Antimutagenic Agents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Essential Oil Composition
2.2. Antioxidant Activity
2.3. Antimutagenic Activity
3. Experimental
3.1. Plant material and Chemicals
3.2. Essential Oil Isolation and Analysis
3.3. Antioxidant Activity Assay
3.4. Rapid Screening for Scavenging Compounds of Essential Oils
3.5. Antimutagenic Activity
3.5.1. Toxicity Assay
3.5.2. Bacterial WP2 Antimutagenicity Assay
3.6. Statistical Analysis
4. Conclusions
Acknowledgements
References
- Ames, B.N. Dietary carcinogens and anticarcinogens: oxygen radicals and degenerative diseases. Science 1983, 221, 1256–1263. [Google Scholar] [CrossRef] [PubMed]
- Freidovich, I. Fundamental aspects of reactive oxygen species, or what’s the matter with oxygen. Ann. N.Y. Acad. Sci. 1999, 893, 13–18. [Google Scholar] [CrossRef]
- Olinski, R.; Gackowski, D.; Foksinski, M.; Rozalski, R.; Roszkowski, K.; Jaruga, P. Oxidative DNA damage: assessment of the role in carcinogenesis, atherosclerosis, and acquired immunodeficiency syndrome. Free Radical Bio. Med. 2002, 33, 192–200. [Google Scholar] [CrossRef]
- Loliger, J. Natural antioxidants. Lipid Technol. 1991, 3, 58–61. [Google Scholar]
- Van de Vijver, L.P.; Kardinaal, A.F.; Grobbe, D.E.; Princen, H.M.; Van Poppel, G. Lipoprotein oxidation, antioxidants and cardiovascular risk: epidemiologic evidence. Prostaglandins Leukot. Essent. Fatty Acids 1997, 5, 479–487. [Google Scholar] [CrossRef]
- Smith, M.A.; Perry, G.; Pryor, W.A. Causes and consequences of oxidative stress in Alzheimer’s disease. Free Radic. Biol. Med. 2002, 32, 1049–1056. [Google Scholar] [CrossRef]
- Halliwell, B.; Aruoma, O.I. DNA damage by oxygen derived species. Its mechanism and measurement in mammalian systems. FEBS Lett. 1991, 281, 9–19. [Google Scholar] [CrossRef]
- Demo, A.; Petrakis, Ch.; Kefalas, P.; Boskou, D. Nutritient antioxidants in some herbs and Mediterranean plant leaves. Food Res. Int. 1988, 31, 351–354. [Google Scholar] [CrossRef]
- Ikken, Y.; Morales, P.; Martınez, A.; Marın, M.L.; Haza, A.I.; Cambero, M.I. Antimutagenic effect of fruit and vegetable ethanolic extracts against N-Nitrosamines evaluated by the Ames test. J. Agric. Food Chem. 1999, 47, 3257–3264. [Google Scholar] [CrossRef] [PubMed]
- Gey, K.F. The antioxidant hypothesis of cardiovascula disease: epidemiology and mechanisms. Biochem. Soc. Trans. 1990, 18, 1041–1045. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, D. Antioxidants and atherosclerosis: Current assessment. Circulation 1991, 84, 1420–1425. [Google Scholar] [CrossRef] [PubMed]
- Larson, RA. Naturally Occurring Antioxidants; CRC Press LLC, Lewis Publishers: Boca Raton, FL, USA, 1997. [Google Scholar]
- Wang, G.; Tang, W.; Bidigare, R.R. Terpenoids as therapeutic drugs and pharmaceutical agents. In Natural Products: Drug Discovery and Therapeutic Medicine; Zhang, L., Demain, A.L., Eds.; Humana Press: Totowa, NJ, USA, 2005; pp. 197–227. [Google Scholar]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Lagouri, V.; Boskou, D. Screening for antioxidant activity of essential oils obtained from spices. In Food Flavors: Generation, Analysis and Process Influence; Charalambous, G., Ed.; Elsevier Science B.V.: New York, NY, USA, 1995; pp. 969–879. [Google Scholar]
- Botsoglou, N.A.; Govaris, A.; Botsoglou, E.N.; Grigoropoulou, S.H.; Papageorgiou, G. Antioxidant activity of dietary oregano essential oil and α-tocopheryl acetate supplementation in long-term frozen stored turkey meat. J. Agric. Food Chem. 2003, 51, 2930–2936. [Google Scholar] [CrossRef] [PubMed]
- Ruberto, G.; Baratta, M.T. Antioxidant activity of selected essential oil components in two lipid model systems. Food Chem. 2000, 68, 167–174. [Google Scholar] [CrossRef]
- Mimica-Dukić, N.; Božin, B.; Soković, M.; Mihajlovic, B.; Matavulj, M. Antimicrobial and antioxidant activities of three Mentha species essential oils. Planta Med. 2003, 69, 413–419. [Google Scholar] [PubMed]
- Hayder, N.; Skandrani, I.; Kilani, S.; Bouhlel, I.; Abdelwahed, A.; Ben Ammar, R.; Mahmoud, A.; Ghedira, K.; Chekir-Ghedira, L. Antimutagenic activity of Myrtus communis L., using Salmonella microsome assay. S. Afr. J. Bot. 2008, 74, 121–125. [Google Scholar] [CrossRef]
- Hartman, P.E.; Shankel, D.M. Antimutagens and anticarcinogens: a survey of putative interceptor molecules. Environ. Mol. Mutagen. 1990, 15, 145–182. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Trikha, P; Athar, M.; Raisuddin, S. Inhibition of benzo(a)pyrene- and cyclophosphamide-induced mutagenicity by Cinnamomum cassia. Mutat. Res. 2001, 480, 179–188. [Google Scholar] [CrossRef]
- Berić, T.; Nikolić, B.; Stanojević, J.; Vuković-Gačić, B.; Knežević-Vukčević, J. Protective effect of basil (Ocimum basilicum L.) against oxidative DNA damage and mutagenesis. Food Chem. Toxicol. 2008, 46, 724–732. [Google Scholar] [CrossRef] [PubMed]
- Mitić-Ćulafić, D.; Žegura, B.; Nikolić, B.; Vuković-Gačić, B.; Knežević-Vukčević, J.; Filipič, M. Protective effect of linalool, myrcene and eucalyptol against t-butylhydroperoxide-induced genotoxicity in bacteria and cultural human cells. Food Chem. Toxicol. 2009, 47, 260–266. [Google Scholar]
- Elfellah, M.S.; Akhter, M.H.; Khan, M.T. Anti-hyperglycemic effect of an extract of Myrtus communis in streptozotocin-induced diabetes in mice. J. Ethnopharmacol. 1984, 11, 275–281. [Google Scholar] [CrossRef]
- Mansouri, S.; Foroumadi, A.; Ghaneie, T.; Najar, AG. Antibacterial activity of the crude extracts and fractionated constituents of Myrtus communis. Pharm. Biol. 2001, 39, 399–401. [Google Scholar] [CrossRef]
- Cakir, A. Essential oil and fatty acid composition of Hippophae rhamnoides L., (Sea Buckthorn) and Myrtus communis L. from Turkey. Biochem. Syst. Ecol. 2004, 3, 809–816. [Google Scholar] [CrossRef]
- Chryssavgi, G.; Vassiliki, P.; Athanasios, M.; Kibouris, T.; Komaitis, M. Essential oil composition of Pistacia lentiscus and Myrtus communis L: Evaluation of antioxidant capacity of methanolic extracts. Food Chem. 2008, 107, 1120–1130. [Google Scholar]
- Bradesi, P.; Tomi, F.; Casanova, J.; Costa, J.; Bernardini, A.F. Chemical composition of myrtle leaf essential oil from Corsica (France). J. Essent. Oil Res. 1997, 9, 283–288. [Google Scholar] [CrossRef]
- Boelens, M.; Jimenez, R. The Chemical Composition of Spanish Myrtle Oils. Part II. J. Essent. Oil Res 1992, 4, 349–353. [Google Scholar] [CrossRef]
- Bouzouita, N.; Kachouri, F.; Hamdi, M.; Chaabouni, M. Antimicrobial activity of essential oils from Tunisian aromatic plants. Flavour Frag. J. 2003, 18, 380–383. [Google Scholar] [CrossRef]
- Yadegarinia, D.; Gachkar, L.; Reyaei, B.; Taghizadeh, M.; Astaneh, SA.; Rasooli, I. Biochemical activities of Iranian Mentha piperita L., and Myrtus communis L. essential oils. Phytochemistry 2006, 67, 1249–1255. [Google Scholar] [CrossRef] [PubMed]
- Hayder, N.; Abdelwahed, A.; Kilani, S.; Ben Ammar, R.; Mahmoud, A.; Ghedira, K.; Chekir- Ghedira, L. Anti-genotoxic and free radical scavenging activity of extracts from (Tunisian) Myrtus communis. Mutat. Res. 2004, 564, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Urios, A.; Blanco, M. Specificity of spontaneous and t-butyl-hydroperoxideinduced mutations in DoxyR strains of Escherichia coli differing with respect to the SOS mutagenesis proficiency and to the MutY and MutM functions. Mutat. Res. 1996, 354, 95–101. [Google Scholar] [CrossRef]
- Božin, B.; Mimica-Dukić, N.; Simin, N.; Anačkov, G. Characterization of the volatile composition of essential oils of some Lamiaceae spices and the antimicrobial and antioxidant activities of the entire oils. J. Agric. Food Chem. 2006, 54, 1822–1828. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.H.; Chang, C.L.; Hsu, H.F. Flavonoid content of several vegetables and their antioxidant activity. J. Sci. Food Agric. 2000, 80, 561–566. [Google Scholar] [CrossRef]
- Blanco, M.; Urios, A.; Martinez, A. New Escherichia coli WP2 tester strains highly sensitive to reversion by oxidative mutagens, Mutat. Res. 1998, 413, 95–101. [Google Scholar]
- European Pharmacopeia, 4th ed.; Council of Europe: Strasbourg Cedex, France, 2002; 2.8.12; pp. 183–184.
- McLafferty, F.W. Wiley Registry™ of Mass Spectral Data, 7th ed.; John Wiley & Sons, Ltd.: New York, NY, USA, 2005. [Google Scholar]
- NIST/EPA/NIH Mass Spectral Library with Search Program; (Data Version: NIST 05, Software Version 2.0d); National Institute of Standards and Technology: New York, NY, USA, 2005.
- Espin, J.C.; Soler-Rivas, C.; Wichers, H.J. Characterization of the total free radical scavenger capacity of vegetable oils and oil fractions using 2,2-diphenyl-1-pirylhydrazyl radical. J. Agric. Food Chem. 2000, 48, 648–656. [Google Scholar] [CrossRef] [PubMed]
- Mimica-Dukić, N.; Božin, B.; Soković, M.; Simin, N. Antimicrobial and antioxidant activities of Melissa officinalis L. (Lamiaceae) essential oil. J. Agric. Food Chem. 2004, 52, 2485–2489. [Google Scholar] [CrossRef] [PubMed]
- Wall, E.M.; Wani, M.C.; Hughes, T.J.; Taylor, H. Plant antimutagenic agents. I. General bioassay and isolation procedure. J. Nat. Prod. 1988, 51, 866–873. [Google Scholar] [CrossRef] [PubMed]
- Hayder, N.; Bouhlel, I.; Skandrani, I.; Kadri, M.; Steiman, R.; Guiraud, P.; Mariotte, A.M.; Ghedir, K.; Dijoux-Franca, M.G.; Chekir-Ghedira, L. In vitro antioxidant and antigenotoxic potential of myricetin-3-O-galactosyde and myricetin-3-o-rhamnoside from Myrtus communis: Modulation of genes involved in cell defense using cDNA microarray. Toxicol. In Vitro 2008, 22, 567–581. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are available from the authors. |
No. | Components | R.I.a | S1 | S2 |
---|---|---|---|---|
1 | Isobutyl isobutyrate | 914 | 1.9 | 0.7 |
2 | α-Thujene | 927 | 0.4 | 0.4 |
3 | α-Pinene | 934 | 14.7 | 35.9 |
4 | β-Pinene | 978 | 0.2 | 0.3 |
5 | β-Myrcene | 992 | 0.3 | 0.2 |
6 | α-Phellandrene | 1006 | 0.4 | 0.3 |
7 | δ-3-Carene | 1012 | 0.5 | 0.4 |
8 | α-Terpinene | 1018 | 0.3 | 0.2 |
9 | p-Cymene | 1026 | 0.9 | 1.2 |
10 | Limonene | 1030 | 4.1 | 4.5 |
11 | 1,8-cineole | 1032 | 25.7 | 23.9 |
12 | (E)-β-Ocimene | 1049 | 0.4 | 0.3 |
13 | γ-Terpinene | 1060 | 0.9 | 0.7 |
14 | α-Terpinolene | 1090 | 1.1 | 0.8 |
15 | Linalool | 1101 | 10.1 | 10.9 |
16 | 4-Terpineol | 1182 | 0.3 | 0.3 |
17 | Cryptone | 1191 | trb | 0.2 |
18 | α-Terpineol | 1194 | 3.1 | 2.8 |
19 | Myrtenol | 1200 | 0.8 | 0.6 |
20 | Geraniol | 1256 | 2.6 | 1.6 |
21 | Myrtenyl acetate | 1325 | 21.6 | 5.4 |
22 | α-Terpinyl acetate | 1355 | 1.4 | 0.5 |
23 | Neryl acetate | 1367 | 0.3 | 0.2 |
24 | Geranyl acetate | 1385 | 3.4 | 2.3 |
25 | Methyl eugenol | 1406 | 0.8 | 1.0 |
26 | (E)-β-Caryophyllene | 1420 | 0.6 | 0.5 |
27 | α-Humulene | 1460 | 1.5 | 1.4 |
28 | Bicyclogermacrene | 1500 | tr | 0.2 |
29 | Spathulenol | 1593 | tr | 0.8 |
Identified compounds | 98.3 | 98.5 | ||
Monoterpene hydrocarbons | 24.2 | 45.3 | ||
Oxygenated monoterpenes | 70.1 | 49.5 | ||
Sesquiterpene hydrocarbons | 2.1 | 2.1 | ||
Oxygenated sesquiterpenes | - | 0.8 |
EO | Concentration (μg /mL) × 103 | Inhibition (%) | IC50 (μg /mL) × 103 |
---|---|---|---|
EO-S1 | 1.25 | 17.50 | 6.24 |
2.50 | 25.16 | ||
5.00 | 44.46 | ||
10.00 | 67.29 | ||
15.00 | 85.12 | ||
EO-S2 | 1.25 | 25.50 | 5.99 |
2.50 | 30.84 | ||
5.00 | 47.26 | ||
10.00 | 63.12 | ||
15.00 | 72.71 | ||
Standard antioxidants | IC50 (μg/mL) | ||
BHT | 8.62 | ||
BHA | 3.09 | ||
PG | 0.42 |
Spot No | Compound | Rf values | Positive reaction to DPPH * |
---|---|---|---|
1 | α-Terpineol | 0.26 | |
2 | Linalool | 0.42 | |
3 | 1,8-Cineole | 0.55 | + |
4 | Methyl eugenol | 0.64 | + |
5 | Mixture of acetylated monotepenoids | 0.76 | |
alcohols (myrtenyl acetate, linalyl | |||
acetate, geranyl acetate) | |||
6 | α-pinene | 0.95 |
Concentration (μL/plate) | - t-BOOH | + t-BOOH1 | ||
---|---|---|---|---|
revert/pl.2 | %I3 | revert/pl. | %I | |
0 | ||||
n-hexane | 97 ± 16 | 100 | 196 ± 13 | 100 |
0.05 | 92 ± 17 | 94 | 187 ± 17* | 95 |
0.075 | 101 ± 20 | 104 | 159 ± 7 | 81 |
0.1 | 88 ± 15 | 90 | 163 ± 22 | 83 |
0.15 | 85 ± 14 | 87 | 142 ± 17 | 72 |
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Mimica-Dukić, N.; Bugarin, D.; Grbović, S.; Mitić-Ćulafić, D.; Vuković-Gačić, B.; Orčić, D.; Jovin, E.; Couladis, M. Essential Oil of Myrtus communis L. as a Potential Antioxidant and Antimutagenic Agents. Molecules 2010, 15, 2759-2770. https://doi.org/10.3390/molecules15042759
Mimica-Dukić N, Bugarin D, Grbović S, Mitić-Ćulafić D, Vuković-Gačić B, Orčić D, Jovin E, Couladis M. Essential Oil of Myrtus communis L. as a Potential Antioxidant and Antimutagenic Agents. Molecules. 2010; 15(4):2759-2770. https://doi.org/10.3390/molecules15042759
Chicago/Turabian StyleMimica-Dukić, Neda, Dušan Bugarin, Slavenko Grbović, Dragana Mitić-Ćulafić, Branka Vuković-Gačić, Dejan Orčić, Emilija Jovin, and Maria Couladis. 2010. "Essential Oil of Myrtus communis L. as a Potential Antioxidant and Antimutagenic Agents" Molecules 15, no. 4: 2759-2770. https://doi.org/10.3390/molecules15042759
APA StyleMimica-Dukić, N., Bugarin, D., Grbović, S., Mitić-Ćulafić, D., Vuković-Gačić, B., Orčić, D., Jovin, E., & Couladis, M. (2010). Essential Oil of Myrtus communis L. as a Potential Antioxidant and Antimutagenic Agents. Molecules, 15(4), 2759-2770. https://doi.org/10.3390/molecules15042759