A Mild and Facile One-Pot Synthesis of N-Methyl-3-Acyl-Pyrroles
Abstract
:1. Introduction
2. Results and Discussion
Entry | Solvent/Solid support | Mode of heating | Temperature (ºC) | Time (h) | Yielda(%) |
---|---|---|---|---|---|
1 | CH2Cl2 | Conventional | 25 | 3 | 61 |
2 | CH2Cl2 | Conventional | 40 | 2.5 | 81 |
3 | CHCl3 | Conventional | 40 | 3 | 63 |
4 | Dioxane | Conventional | 40 | 2.5 | 60 |
5 | THF | Conventional | 40 | 2.5 | 63 |
6 | Neat | Conventional | 40 | 3 | 53 |
7 | Neat | MW | Not detected | 10 min | <30 |
8 | Basic alumina | MW | Not detected | 10 min | <30 |
Entry | Product | Time (h) | Yielda(%) |
---|---|---|---|
1 | 4a | 2.5 | 81 |
2 | 4b | 3 | 83 |
3 | 4c | 3 | 73 |
4 | 4d | 3.5 | 78 |
5 | 4e | 2.5 | 76 |
3. Experimental
3.1 General
3.2. General procedure for preparation of 3-acylpyrroles 4a-e
4. Conclusions
Acknowledgements
- Sample Availability: Samples of compounds 4a-e are available from the authors.
References and Notes
- Lehuedu, J.; Fauconneau, B.; Barrier, L.; Ourakow, M.; Piriou, A.; Vierfond, J.M. Synthesis and antioxidant activity of new tetraarylpyrroles. Eur. J. Med. Chem. 1999, 34, 991–996. [Google Scholar]
- Raimondi, M.V.; Cascioferro, S.; Schillaci, D.; Petruso, S. Synthesis and antimicrobial activity of new bromine-rich pyrrole derivatives related to monodeoxypyoluteorin. Eur. J. Med. Chem. 2006, 41, 1439–1445. [Google Scholar] [CrossRef]
- Cara, L.C.L.; Camacho, M.E.; Carrión, M.D.; Tapias, V.; Gallo, M.A.; Escames, G.; Acuña-Castroviejo, D.; Espinosa, A.; Entrena, A. Phenylpyrrole derivatives as neural and inducible nitric oxide synthase (nNOS and iNOS) inhibitors. Eur. J. Med. Chem. 2009, 44, 2655–2666. [Google Scholar] [CrossRef]
- Abu-Rabeah, K.; Marks, R.S. Impedance study of the hybrid molecule alginate–pyrrole: Demonstration as host matrix for the construction of a highly sensitive amperometric glucose biosensor. Sens. Actuat. B. Chem. 2009, 136, 516–522. [Google Scholar] [CrossRef]
- Liu, J.-H.; Yang, Q.-C.; Mak, T.C.W.; Wong, H.N.C. Highly regioselective synthesis of 2,3,4-trisubstituted 1H-pyrroles: A formal total synthesis of lukianol A. J. Org. Chem. 2000, 65, 3587–3595. [Google Scholar]
- Tao, H.; Hwang, I.; Boger, D.L. Multidrug resistance reversal activity of permethyl ningalin B amide derivatives. Bioorg. Med. Chem. Lett. 2004, 14, 5979–5981. [Google Scholar] [CrossRef]
- Lainton, A.H.; Huffman, J.W. 1-Alkyl-3-(1-naphthoyl)pyrroles: A new class of cannabinoid. Tetrahedron Lett. 1995, 36, 1401–1404. [Google Scholar] [CrossRef]
- Huffman, J.W.; Dai, D.; Martin, B.R.; Compton, D.R. Design, synthesis and pharmacology of cannabimimetic indoles. Bioorg. Med. Chem. Lett. 1994, 4, 563–566. [Google Scholar]
- Pfäffli, P.; Tamm, C. Revidierte struktur von verrucarin E. Eine synthese des antibioticums und verwandter β-acetyl-pyrrol-derivate. Verrucarine und roridine. Helv. Chim. Acta 1969, 52, 1911–1920. [Google Scholar] [CrossRef]
- Langley, P.J.; Davis, F.J.; Mitchell, G.R. Approaches to 1,1-disubstituted cinnolin-3-ylio oxides: synthesis and reactivity of a new class of heterocyclic betaines. J. Chem. Soc. Perkin. Trans. 1997, 2, 2229–2236. [Google Scholar]
- Ruhe, J.; Ezquerra, T.A.; Wegner, G. New conducting polymers from 3-alkylpyrroles. Synth Met. 1989, 28, 177–181. [Google Scholar]
- Delabouglise, D.; Roncali, J.; Lemaire, M.; Garnier, F. Control of the lipophilicity of polypyrrole by 3-alkyl substitution. J. Chem. Soc. Chem. Commun. 1989, 475–477. [Google Scholar]
- de Lacy Costello, B.P.J.; Evans, P.; Guernion, N.; Ratcliffe, N.M.; Sivanand, P.S.; Teare, G.C. The synthesis of a number of 3-alkyl and 3-carboxy substituted pyrroles; their chemical polymerisation onto poly(vinylidene fluoride) membranes, and their use as gas sensitive resistors. Synth. Met. 2000, 114, 181–188. [Google Scholar] [CrossRef]
- Garnier, F.; Korri-Youssoufi, H.; Srivastava, P.; Mandrand, B.; Delair, T. Toward intelligent polymers: DNA sensors based on oligonucleotide-functionalized polypyrroles. Synth Met. 1999, 100, 89–94. [Google Scholar]
- Gilchrist, T.L. Synthesis of aromatic heterocycles. J. Chem. Soc. Perkin. Trans. 1998, 1, 615–628. [Google Scholar] [CrossRef]
- Dieter, R.K.; Yu, H. A facile synthesis of polysubstituted pyrroles. Org. Lett. 2000, 2, 2283–2286. [Google Scholar] [CrossRef]
- Iwasawa, N.; Maeyama, K.; Saitou, M. Reactions of propargyl metallic species generated by the addition of alkynyllithiums to fischer-type carbene complexes. J. Am. Chem. Soc. 1997, 119, 1486–1487. [Google Scholar] [CrossRef]
- Furstner, A.; Weintritt, H.; Hupperts, A. A new, titanium-mediated approach to pyrroles: First synthesis of lukianol A and lamellarin O dimethyl ether. J. Org. Chem. 1995, 60, 6637–6641. [Google Scholar]
- Katritzky, A.; Jiang, J.; Steel, P.J. 1-Aza-1,3-bis(triphenylphosphoranylidene)propane: A Novel :CHCH2N: Synthon. J. Org. Chem. 1994, 59, 4551–4555. [Google Scholar] [CrossRef]
- Periasamy, M.; Srinivas, G.; Bharati, P. Conversion of aryl methyl ketimines to 2,5-diarylpyrroles using TiCl4/Et3N. J. Org. Chem. 1999, 64, 4204–4205. [Google Scholar] [CrossRef]
- Chen, J.; Wu, H.; Zheng, Z.; Jin, C.; Zhang, X.; Su, W. An approach to the Paal–Knorr pyrroles synthesis catalyzed by Sc(OTf)3 under solvent-free conditions. Tetrahedron Lett. 2006, 47, 5383–5387. [Google Scholar]
- Valizadeh, H.; Shockravi, A. An efficient procedure for the synthesis of coumarin derivatives using TiCl4 as catalyst under solvent-free conditions. Tetrahedron Lett. 2005, 46, 3501–3503. [Google Scholar] [CrossRef]
- Valizadeh, H.; Mamaghani, M.; Badrian, A. Effect of microwave irradiation on reaction of arylaldehyde derivatives with some active methylene compounds in aqueous media. Synth. Commun. 2005, 35, 785–790. [Google Scholar] [CrossRef]
- Valizadeh, H.; Vaghefi, H. One-pot Wittig and Knoevenagel reactions in ionic liquid as convenient methods for the synthesis of coumarin derivatives. Synth. Commun. 2009, 39, 1666–1678. [Google Scholar] [CrossRef]
- Shockravi, A.; Shargi, H.; Valizadeh, H.; Heravi, M.M. Solvent free synthesis of coumarins. Phosphorus, Sulfur, Silicon Relat. Elem. 2002, 177, 2555–2559. [Google Scholar]
- Valizadeh, H.; Amiri, M.; Gholipur, H. Efficient and convenient method for the synthesis of isoxazoles in ionic liquid. J. Heterocycl. Chem. 2009, 46, 108–110. [Google Scholar] [CrossRef]
- Valizadeh, H.; Heravi, M.M.; Amiri, M. Unexpected synthesis of N-methylbenzo[d]isoxazolium hydroxides under microwave irradiation conditions. Mol. Divers. 2009. [Google Scholar] [CrossRef]
- Jones, R.A. Advances in Heterocyclic Chemistry; Katritzky, A.R., Boulton, A.J., Eds.; Academic Press: New York, NY, USA, 1970; Volume 11, p. 383. [Google Scholar]
- Marino, G. Advances in Heterocyclic Chemistry; Katritzky, A.R., Boulton, A.J., Eds.; Academic Press: New York, NY, USA, 1970; Volume 13, p. 235. [Google Scholar]
- Bird, C.W.; Cheesman, G.W.H. Comprehensive Heterocyclic Chemistry; Katritzky, A., Ress, C.W., Eds.; Pergamon Press: Oxford, UK, 1984; Volume 4, p. 39. [Google Scholar]
- Cooper, G. Cyclopropyl 2-pyrrolyl ketone. J. Org. Chem. 1971, 36, 2897. [Google Scholar] [CrossRef]
- Tani, M.; Ariyasu, T.; Nishiyama, C.; Hagiwara, H.; Watanabe, T.; Yokoyama, Y.; Murakami, Y. β-Acylation of ethyl pyrrole-2-carboxylate by Friedel-Crafts acylation : Scope and limitations (synthetic studies on indoles and related compounds. XXXVIII). Chem. Pharm. Bull. 1996, 44, 48–54. [Google Scholar] [CrossRef]
- Kakushima, M.; Hamel, P.; Frenette, R.; Rokach, J. Regioselective synthesis of acylpyrroles. J. Org. Chem. 1983, 48, 3214–3219. [Google Scholar] [CrossRef]
- Anderson, H.J.; Loader, C.E.; Xu, R.X.; Le, N.; Gogan, N.J.; McDonald, R.; Edwards, L.G. Pyrrole chemistry. XXVIII. Substitution reactions of 1-(phenylsulfonyl)pyrrole and some derivatives. Can. J. Chem. 1985, 63, 896–902. [Google Scholar] [CrossRef]
© 2010 by the authors;
Share and Cite
Valizadeh, H.; Fakhari, A. A Mild and Facile One-Pot Synthesis of N-Methyl-3-Acyl-Pyrroles. Molecules 2010, 15, 2972-2979. https://doi.org/10.3390/molecules15052972
Valizadeh H, Fakhari A. A Mild and Facile One-Pot Synthesis of N-Methyl-3-Acyl-Pyrroles. Molecules. 2010; 15(5):2972-2979. https://doi.org/10.3390/molecules15052972
Chicago/Turabian StyleValizadeh, Hassan, and Ashraf Fakhari. 2010. "A Mild and Facile One-Pot Synthesis of N-Methyl-3-Acyl-Pyrroles" Molecules 15, no. 5: 2972-2979. https://doi.org/10.3390/molecules15052972
APA StyleValizadeh, H., & Fakhari, A. (2010). A Mild and Facile One-Pot Synthesis of N-Methyl-3-Acyl-Pyrroles. Molecules, 15(5), 2972-2979. https://doi.org/10.3390/molecules15052972