Phenolic Extracts from Acacia mangium Bark and Their Antioxidant Activities
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental
3.1. Sample preparation and chemicals
3.2. Experimental design
3.3. Solvent extraction
3.4. Determination of total phenolics
3.5. Antiradical activity
3.6. Ferric-reducing antioxidant power (FRAP) assay
3.7. MALDI-TOF MS analysis
4. Conclusions
Acknowledgements
References and Notes
- Halliwell, B. Antioxidants and human disease: A general introduction. Nutr. Rev. 1997, 55, 544–552. [Google Scholar] [CrossRef]
- Branen, A.L. Toxicology and biochemistry of butylated hydroxyanisole and butylated hydroxytoluene. J. Am. Oil Chem. Soc. 1975, 52, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Takajashi, O.; Hiraga, K. Effects of low levels of BHT on the prothrombin index of male rats. Food Cosmet. Toxicol. 1978, 16, 475–477. [Google Scholar] [CrossRef]
- Pokorny, J. Natural antioxidants for food use. Trends Food Sci. Tech. 1991, 2, 223–227. [Google Scholar] [CrossRef]
- Sousa, C.; Valentao, P.; Ferreres, F.; Seabra, R.; Andrade, P.B. Tronchuda cabbage (Brassica oleracea L. costata DC): Scavenger of reactive nitrogen species. J. Agric. Food Chem. 2008, 56, 4205–4211. [Google Scholar] [CrossRef] [PubMed]
- Ferrerest, F.; Taveira, M.; Pereira, D.M.; Valentao, P.; Andrade, P.B. Tomato (Lycopersicon esculentum) seeds: New flavonols and cytotoxic effect. J. Agric. Food Chem. 2010, 58, 2854–2861. [Google Scholar] [CrossRef] [PubMed]
- Pereira, J.A.; Pereira, A.P.G.; Ferreira, I.C.F.R.; Valentao, P.; Andrade, P.B.; Seabra, R.; Estevinho, L.; Bento, A. Table olives from Portugal: Phenolic compounds, antioxidant potential, and antimicrobial activity. J. Agric. Food Chem. 2006, 54, 8425–8431. [Google Scholar] [CrossRef] [PubMed]
- Jerez, M.; Tourino, S.; Sineiro, J.; Torres, J.L.; Nunez, M.J. Procyanidins from pine bark: Relationships between structure, composition and antiradical activity. Food Chem. 2007, 104, 518–527. [Google Scholar] [CrossRef]
- Jerez, M.; Pinelo, M.; Sineiro, J.; Nunez, M.J. Influence of extraction conditions on phenolic yields from pine bark: Assessment of procyanidins polymerization degree by thiolysis. Food Chem. 2006, 94, 406–414. [Google Scholar] [CrossRef]
- Tsai, L.M. Studies on Acacica mangium in kemasul forest, Malaysia. ⅰ.Biomass and productivity. J. Trop. Ecol. 1988, 4, 293–302. [Google Scholar] [CrossRef]
- Chen, C.J.; Hu, H.Y.; Qin, Y.B. Experiment on extraction of vegetable tannin from bark of Acacica mangium (in Chinese). J. Guangxi Acad. Sci. 2001, 17, 100–103. [Google Scholar]
- Liu, L.X.; Sun, Y.; Laura, T.; Liang, X.F.; Ye, H.; Zeng, X.X. Determination of polyphenolic content and antioxidant activity of kudingcha made from Ilex kudingcha C.J. Tseng. Food Chem. 2009, 112, 35–41. [Google Scholar] [CrossRef]
- Imeh, U.; Khokhar, S. Distribution of conjugated and free phenols in fruits: Antioxidant activity and cultivar variations. J. Agric. Food Chem. 2002, 50, 6301–6306. [Google Scholar] [CrossRef] [PubMed]
- Waterman, P.G.; Mole, S. Analysis of Phenolic Plant Metabolites; Blackwell Scientific Publications: Oxford, UK, 1994; pp. 85–87. [Google Scholar]
- Hagerman, A.E.; Butler, L.G. Assay of condensed tannins or flavonoid oligomers and related flavonoid in plants. Meth. Enzymol. 1994, 234, 429–437. [Google Scholar] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Myers, R.H.; Montgomery, D.C. Response Surface Methodology; Wiley: New York, NY, USA, 1995; pp. 134–174. [Google Scholar]
- Montgomery, D.C. Design and Analysis of Experiments, 2nd ed.; Wiley: New York, NY, USA, 1997; pp. 43–80. [Google Scholar]
- Ficarra, R.; Cutroneo, P.; Aturki, Z.; Tommasini, S.; Calabro, M.L.; Phan-Tan-Luu, R.; Fanali, S.; Ficarra, P. An experimental design methodology applied to the enantioseparation of a non-steroidal anti-inflammatory drug candidate. J. Pharm. Biomed. Anal. 2002, 29, 989–997. [Google Scholar] [CrossRef]
- Zheng, W.; Wang, S.Y. Antioxidant activity and phenolic compounds in selected herbs. J. Agric. Food Chem. 2001, 49, 5165–5170. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.L.; Lin, Y.M.; Zhou, H.C.; Wei, S.D.; Chen, J.H. Condensed tannins from mangrove species Kandelia candel and Rhizophora mangle and their antioxidant activity. Molecules 2010, 15, 420–431. [Google Scholar] [CrossRef] [PubMed]
- Krueger, C.G.; Dopke, N.C.; Treichel, P.M.; Folts, J.; Reed, J.D. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of polygalloyl polyflavan-3-ols in grape seed extract. J. Agric. Food Chem. 2000, 48, 1663–1667. [Google Scholar] [CrossRef] [PubMed]
- Monagas, M.; Quintanilla-Lopez, J.E.; Gomez-Cordoves, C.; Bartolome, B.; Lebron-Aguilar, R. MALDI-TOF MS analysis of plant proanthocyanidins. J. Pharm. Biomed. Anal. 2010, 51, 358–372. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.L.; Lin, Y.M. Tannins from Canarium album with potent antioxidant activity. J. Zhejiang Univ. Sci. B 2008, 9, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Jayaprakasha, G.K.; Singh, R.P.; Sakariah, K.K. Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Food Chem. 2001, 73, 285–290. [Google Scholar] [CrossRef]
- Braca, A.; Tommasi, N.D.; Bari, L.D.; Pizza, C.; Politi, M.; Morelli, I. Antioxidant principles from Bauhinia terapotensis. J. Nat. Prod. 2001, 64, 892–895. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Xiang, P.; Lin, Y.M.; Lin, P.; Xiang, C. Effects of adduct ions on matrix-assisted laser desorption/ionization time of flight mass spectrometry of condensed tannins: A prerequisite knowledge. Chin. J. Anal. Chem. 2006, 34, 1019–1022. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are available from the authors. |
Factors | Center | Variation step |
---|---|---|
U1: time of contact (min) | 60 | 30 |
U2: temperature (℃) | 37.5 | 12.5 |
U3: liquid-solid ratio | 7.5 | 2.5 |
No. | Coded variables | Real variables | Responses | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | U1 | U2 | U3 | Y1 | Y2 | Y3 | |||
1 | –1 | –1 | –1 | 30 | 25 | 5 | 35.17 | 91.08 | 1.67 | ||
2 | 1 | –1 | –1 | 90 | 25 | 5 | 42.37 | 94.77 | 2.03 | ||
3 | –1 | 1 | –1 | 30 | 50 | 5 | 43.16 | 94.40 | 2.08 | ||
4 | 1 | 1 | –1 | 90 | 50 | 5 | 39.15 | 94.06 | 2.05 | ||
5 | –1 | –1 | 1 | 30 | 25 | 10 | 28.57 | 69.06 | 1.28 | ||
6 | 1 | –1 | 1 | 90 | 25 | 10 | 29.51 | 69.74 | 1.41 | ||
7 | –1 | 1 | 1 | 30 | 50 | 10 | 28.02 | 68.16 | 1.24 | ||
8 | 1 | 1 | 1 | 90 | 50 | 10 | 33.23 | 74.13 | 1.47 | ||
9 | –1.6818 | 0 | 0 | 9.5 | 37.5 | 7.5 | 18.30 | 48.32 | 0.86 | ||
10 | 1.6818 | 0 | 0 | 110.5 | 37.5 | 7.5 | 28.21 | 68.34 | 1.31 | ||
11 | 0 | –1.6818 | 0 | 60.0 | 16.5 | 7.5 | 20.93 | 50.78 | 0.93 | ||
12 | 0 | 1.6818 | 0 | 60.0 | 58.5 | 7.5 | 42.87 | 94.60 | 2.07 | ||
13 | 0 | 0 | –1.6818 | 60.0 | 37.5 | 3.3 | 40.65 | 94.27 | 2.02 | ||
14 | 0 | 0 | 1.6818 | 60.0 | 37.5 | 11.7 | 29.64 | 67.01 | 1.25 | ||
15 | 0 | 0 | 0 | 60.0 | 37.5 | 7.5 | 24.66 | 55.57 | 1.20 | ||
16 | 0 | 0 | 0 | 60.0 | 37.5 | 7.5 | 26.28 | 55.06 | 1.19 | ||
17 | 0 | 0 | 0 | 60.0 | 37.5 | 7.5 | 25.06 | 53.61 | 1.19 | ||
18 | 0 | 0 | 0 | 60.0 | 37.5 | 7.5 | 25.31 | 53.45 | 1.17 | ||
19 | 0 | 0 | 0 | 60.0 | 37.5 | 7.5 | 26.42 | 55.62 | 1.20 | ||
20 | 0 | 0 | 0 | 60.0 | 37.5 | 7.5 | 24.86 | 55.08 | 1.21 |
Response | Reduced response modelsa | Adjusted R2 | Model P value | % CV | Adequate precision |
---|---|---|---|---|---|
Y1 | 25.44 + 3.28X2 – 4.32X3 + 3.22X22 + 4.37X32 | 0.742 | 0.000 | 14.05 | 9.130 |
Y2 | 57.23 + 5.84X2 – 10.18X3 + 8.20X22 + 11.01X32 | 0.774 | 0.000 | 13.18 | 10.411 |
Y3 | 1.19 + 0.11X1 + 0.17X2 – 0.27X3 + 0.16X22 + 0.20X32 | 0.823 | 0.000 | 13.50 | 11.519 |
Polymer | Number of catechin unit | Number of gallocatechin unit | Calculated [M + Cs]+ | Observed [M + Cs]+ |
---|---|---|---|---|
Tetramer | 4 | 0 | 1287 | 1287.27 |
3 | 1 | 1303 | 1303.26 | |
Pentamer | 5 | 0 | 1575 | 1575.34 |
4 | 1 | 1591 | 1591.34 | |
3 | 2 | 1607 | 1607.33 | |
Hexamer | 6 | 0 | 1863 | 1863.43 |
5 | 1 | 1879 | 1879.42 | |
4 | 2 | 1895 | 1895.41 | |
Heptamer | 7 | 0 | 2151 | 2151.52 |
6 | 1 | 2167 | 2167.51 | |
5 | 2 | 2183 | 2183.49 | |
Octamer | 8 | 0 | 2439 | 2439.56 |
7 | 1 | 2455 | 2455.61 | |
6 | 2 | 2471 | 2471.68 | |
Nonamer | 9 | 0 | 2727 | 2727.70 |
8 | 1 | 2743 | 2743.64 | |
7 | 2 | 2759 | 2760.65 |
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Zhang, L.; Chen, J.; Wang, Y.; Wu, D.; Xu, M. Phenolic Extracts from Acacia mangium Bark and Their Antioxidant Activities. Molecules 2010, 15, 3567-3577. https://doi.org/10.3390/molecules15053567
Zhang L, Chen J, Wang Y, Wu D, Xu M. Phenolic Extracts from Acacia mangium Bark and Their Antioxidant Activities. Molecules. 2010; 15(5):3567-3577. https://doi.org/10.3390/molecules15053567
Chicago/Turabian StyleZhang, Liangliang, Jiahong Chen, Yongmei Wang, Dongmei Wu, and Man Xu. 2010. "Phenolic Extracts from Acacia mangium Bark and Their Antioxidant Activities" Molecules 15, no. 5: 3567-3577. https://doi.org/10.3390/molecules15053567
APA StyleZhang, L., Chen, J., Wang, Y., Wu, D., & Xu, M. (2010). Phenolic Extracts from Acacia mangium Bark and Their Antioxidant Activities. Molecules, 15(5), 3567-3577. https://doi.org/10.3390/molecules15053567