MALDI-TOF MS Analysis of Condensed Tannins with Potent Antioxidant Activity from the Leaf, Stem Bark and Root Bark of Acacia confusa
Abstract
:1. Introduction
2. Results and Discussion
2.1. Content of total phenolics and extractable condensed tannins
Samples | Total phenolics (mg/g ) | Extractable condensed tannins (mg/g) |
---|---|---|
Leaf | 180.08 ± 2.67c | 64.17 ± 1.44c |
Stem bark | 394.69 ± 5.03b | 247.76 ± 10.93b |
Root bark | 467.99 ± 6.22a | 280.70 ± 11.75a |
2.2. MALDI-TOF MS analysis
Polymer | n1 | n2 | n3 | n4 | n5 | Calculated [M + Cs]+ | Observed [M + Cs]+ | ||
---|---|---|---|---|---|---|---|---|---|
Leaf | Stem bark | Root bark | |||||||
Trimer | 0 | 3 | 0 | 0 | 0 | 999 | 999 | 999 | 999 |
1 | 2 | 0 | 0 | 0 | 983 | 983 | 983 | 983 | |
0 | 2 | 1 | 0 | 0 | 1015 | 1015 | -- | -- | |
0 | 3 | 0 | 1 | 0 | 1145 | -- | 1145 | 1145 | |
0 | 3 | 0 | 0 | 1 | 1151 | 1151 | 1151 | -- | |
Tetramer | 0 | 4 | 0 | 0 | 0 | 1287 | 1287 | 1287 | 1287 |
1 | 3 | 0 | 0 | 0 | 1271 | 1271 | 1271 | 1271 | |
0 | 3 | 1 | 0 | 0 | 1303 | 1303 | -- | -- | |
0 | 4 | 0 | 1 | 0 | 1433 | -- | 1433 | 1433 | |
0 | 4 | 0 | 0 | 1 | 1439 | 1439 | 1439 | -- | |
Pentamer | 0 | 5 | 0 | 0 | 0 | 1575 | 1575 | 1575 | 1575 |
1 | 4 | 0 | 0 | 0 | 1559 | 1559 | 1559 | 1559 | |
0 | 4 | 1 | 0 | 0 | 1591 | 1591 | -- | -- | |
0 | 5 | 0 | 1 | 0 | 1721 | -- | 1721 | 1721 | |
0 | 5 | 0 | 0 | 1 | 1727 | 1727 | 1727 | -- | |
Hexamer | 0 | 6 | 0 | 0 | 0 | 1863 | 1863 | 1863 | 1863 |
1 | 5 | 0 | 0 | 0 | 1847 | 1847 | 1847 | 1847 | |
0 | 5 | 1 | 0 | 0 | 1879 | 1879 | -- | -- | |
0 | 6 | 0 | 1 | 0 | 2009 | -- | 2009 | 2009 | |
0 | 6 | 0 | 0 | 1 | 2015 | 2015 | 2015 | -- | |
Heptamer | 0 | 7 | 0 | 0 | 0 | 2151 | 2151 | 2151 | 2151 |
1 | 6 | 0 | 0 | 0 | 2135 | 2135 | 2135 | 2135 | |
0 | 6 | 1 | 0 | 0 | 2167 | 2167 | -- | -- | |
0 | 7 | 0 | 1 | 0 | 2297 | -- | 2297 | 2297 | |
0 | 7 | 0 | 0 | 1 | 2303 | 2303 | 2303 | -- | |
Octamer | 0 | 8 | 0 | 0 | 0 | 2439 | 2439 | 2439 | 2439 |
1 | 7 | 0 | 0 | 0 | 2423 | 2423 | 2423 | 2423 | |
0 | 7 | 1 | 0 | 0 | 2455 | 2455 | -- | -- | |
0 | 8 | 0 | 1 | 0 | 2585 | -- | 2585 | 2586 | |
0 | 8 | 0 | 0 | 1 | 2591 | 2591 | 2591 | -- | |
Nonamer | 0 | 9 | 0 | 0 | 0 | 2727 | 2727 | 2727 | 2727 |
1 | 8 | 0 | 0 | 0 | 2711 | -- | 2711 | 2711 | |
0 | 9 | 0 | 0 | 1 | 2873 | -- | 2873 | -- | |
Decamer | 0 | 10 | 0 | 0 | 0 | 3015 | 3015 | 3015 | 3015 |
0 | 10 | 0 | 1 | 0 | 3161 | -- | 3161 | 3161 | |
Undecamer | 0 | 11 | 0 | 0 | 0 | 3303 | 3303 | 3303 | 3303 |
Dodecamer | 0 | 12 | 0 | 0 | 0 | 3591 | -- | 3591 | -- |
2.3. DPPH radical scavenging activity
Samples | Antioxidant activity | |
---|---|---|
IC50/DPPH (µg/mL) a | FRAP (mmol AAE/g) b | |
Leaf | 113.06 ± 1.52c | 5.92 ± 0.04a |
Stem bark | 87.85 ± 0.52d | 5.89 ± 0.14a |
Root bark | 89.03 ± 0.50d | 5.69 ± 0.09a |
Ascorbic acid | 118.88 ± 3.33b | -- |
BHA | 126.21 ± 1.32a | 4.93 ± 0.09b |
2.4. Ferric reducing antioxidant power (FRAP)
3. Experimental
3.1. Chemicals and materials
3.2. Extraction and purification of the condensed tannins
3.3. Determination of total phenolics and extractable condensed tannins
3.4. MALDI-TOF MS analysis
3.5. DPPH radical scavenging activity
3.6. Ferric reducing/antioxidant power (FRAP) assay
3.7. Statistical analysis
4. Conclusions
Acknowledgements
- Samples Availability: Samples of the compounds are available from the authors.
References
- Kraus, T.E.C.; Dahlgren, R.A.; Zasoski, R.J. Tannins in nutrient dynamics of forest ecosystems - a review. Plant Soil 2003, 256, 41–66. [Google Scholar] [CrossRef]
- Lin, Y.M.; Liu, X.W.; Zhang, H.; Fan, H.Q.; Lin, G.H. Nutrient conservation strategies of a mangrove species Rhizophora stylosa under nutrient limitation. Plant Soil 2010, 326, 469–479. [Google Scholar]
- Yu, Z.; Dahlgren, R.A. Evaluation of methods for measuring polyphenols in conifer foliage. J. Chem. Ecol. 2000, 26, 2119–2140. [Google Scholar]
- Hernes, P.J.; Benner, R.; Cowie, G.L.; GOni, M.A.; Bergamaschi, B.A.; Hedges, J.I. Tannin diagenesis in mangrove leaves from a tropical estuary: A novel molecular approach. Geochim. Cosmochim. Acta 2001, 65, 3109–3122. [Google Scholar] [CrossRef]
- Hemingway, R.W.; Karchesy, J.J. Chemistry and Significance of Condensed Tannins; Plenum: New York, NY, USA, 1989. [Google Scholar]
- Porter, L.J. The Flavanoids: Advances in Research Since 1980; Harborne, J.B., Ed.; Chapman and Hall: New York, NY, USA, 1988; pp. 21–62. [Google Scholar]
- Porter, L.J. The Flavanoids: Advances in Research Since 1986; Harborne, J.B., Ed.; Chapman and Hall: London, UK, 1994; pp. 23–54. [Google Scholar]
- Waterman, P.G.; Mole, S. Analysis of Phenolic Plant Metabolites; Blackwell Scientific Publications: Oxford, UK, 1994. [Google Scholar]
- Svedström, U.; Vuorela, H.; Kostiainen, R.; Huovinen, K.; Laakso, I.; Hiltunen, R. High-performance liquid chromatographic determination of oligomeric procyanidins from dimers up to the hexamer in hawthorn. J. Chromatogr. A 2002, 968, 53–60. [Google Scholar] [CrossRef]
- Noferi, M.; Masson, E.; Merlin, A.; Pizzi, A.; Deglise, X. Antioxidant characteristics of hydrolysable and polyflavonoid tannins: An ESR kinetics study. J. Appl. Polymer Sci. 1997, 63, 475–482. [Google Scholar]
- Hümmer, W.; Schreier, P. Analysis of proanthocyanidins. Mol. Nutr. Food Res. 2008, 52, 1381–1398. [Google Scholar] [CrossRef]
- Es-Safi, N.E.; Guyot, S.; Ducrot, P.H. NMR, ESI/MS, and MALDI-TOF/MS Analysis of Pear Juice Polymeric Proanthocyanidins with Potent Free Radical Scavenging Activity. J. Agric. Food Chem. 2006, 54, 6969–6977. [Google Scholar]
- Behrens, A.; Maie, N.; Knicker, H.; Kögel-Knabner, I. MALDI-TOF mass spectrometry and PSD fragmentation as means for the analysis of condensed tannins in plant leaves and needles. Phytochemistry 2003, 62, 1159–1170. [Google Scholar] [CrossRef]
- Chen, Y.; Hagerman, A.E. Characterization of Soluble Non-covalent Complexes between Bovine Serum Albumin and [beta]-1, 2, 3, 4, 6-Penta-O-galloyl-d-glucopyranose by MALDI-TOF MS. J. Agric. Food Chem. 2004, 52, 4008–4011. [Google Scholar] [CrossRef]
- Rahim, A.A.; Rocca, E.; Steinmetz, J.; Jain Kassim, M.; Sani Ibrahim, M.; Osman, H. Antioxidant activities of mangrove Rhizophora apiculata bark extracts. Food Chem. 2008, 107, 200–207. [Google Scholar] [CrossRef]
- Vivas, N.; Nonier, M.F.; de Gaulejac, N.V.; Absalon, C.; Bertrand, A.; Mirabel, M. Differentiation of proanthocyanidin tannins from seeds, skins and stems of grapes (Vitis vinifera) and heartwood of Quebracho (Schinopsis balansae) by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and thioacidolysis/liquid chromatography/electrospray ionization mass spectrometry. Anal. Chim. Acta 2004, 513, 247–256. [Google Scholar] [CrossRef]
- Zhang, L.L.; Lin, Y.M. HPLC, NMR and MALDI-TOF MS analysis of condensed tannins from Lithocarpus glaber leaves with potent free radical scavenging activity. Molecules 2008, 13, 2986–2997. [Google Scholar] [CrossRef]
- Zhang, L.L.; Lin, Y.M.; Zhou, H.C.; Wei, S.D.; Chen, J.H. Condensed Tannins from Mangrove Species Kandelia candel and Rhizophora mangle and Their Antioxidant Activity. Molecules 2010, 15, 420–431. [Google Scholar] [CrossRef]
- Pasch, H.; Pizzi, A.; Rode, K. MALDI–TOF mass spectrometry of polyflavonoid tannins. Polymer 2001, 42, 7531–7539. [Google Scholar] [CrossRef]
- Wu, J.H.; Tung, Y.T.; Wang, S.Y.; Shyur, L.F.; Kuo, Y.H.; Chang, S.T. Phenolic antioxidants from the heartwood of Acacia confusa. J. Agric. Food Chem. 2005, 53, 5917–5921. [Google Scholar]
- Kan, W.S. Leguminosae. In Manual of Medicinal Plants in Taiwan; Kan, W.S., Ed.; National Research Institute of Chinese Medicine: Taipei, Taiwan, 1978; Volume 2, pp. 239–240. [Google Scholar]
- Chang, S.T.; Wu, J.H.; Wang, S.Y.; Kang, P.L.; Yang, N.S.; Shyur, L.F. Antioxidant activity of extracts from Acacia confusa bark and heartwood. J. Agric. Food Chem. 2001, 49, 3420–3424. [Google Scholar] [CrossRef]
- Lee, T.H.; Qiu, F.; Waller, G.R.; Chou, C.H. Three new flavonol galloylglycosides from leaves of Acacia confusa. J. Nat. Prod. 2000, 63, 710–712. [Google Scholar] [CrossRef]
- Lee, T.H.; Liu, D.Z.; Hsu, F.L.; Wu, W.C.; Hou, W.C. Structure-activity Relationships of Five Myricetin Galloylglycosides from Leaves of Acacia Confusa. Bot. Stud. 2006, 47, 37–43. [Google Scholar]
- Tung, Y.T.; Wu, J.H.; Kuo, Y.H.; Chang, S.T. Antioxidant activities of natural phenolic compounds from Acacia confusa bark. Bioresour. Technol. 2007, 98, 1120–1123. [Google Scholar]
- Tung, Y.T.; Wu, J.H.; Huang, C.Y.; Kuo, Y.H.; Chang, S.T. Antioxidant activities and phytochemical characteristics of extracts from Acacia confusa bark. Bioresour. Technol. 2009, 100, 509–514. [Google Scholar]
- Hsieh, C.Y.; Chang, S.T. Antioxidant Activities and Xanthine Oxidase Inhibitory Effects of Phenolic Phytochemicals from Acacia confusa Twigs and Branches. J. Agric. Food Chem. 2010, 58, 1578–1583. [Google Scholar]
- Tung, Y.T.; Wu, J.H.; Hsieh, C.Y.; Chen, P.S.; Chang, S.T. Free radical-scavenging phytochemicals of hot water extracts of Acacia confusa leaves detected by an on-line screening method. Food Chem. 2009, 115, 1019–1024. [Google Scholar] [CrossRef]
- Cao, G.; Sofic, E.; Prior, R.L. Antioxidant and prooxidant behavior of flavonoids: Structure-activity relationships. Free Radic. Biol. Med. 1997, 22, 749–760. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Jerez, M.; Sineiro, J.; Guitián, E.; Núñez, M.J. Identification of polymeric procyanidins from pine bark by mass spectrometry. Rap. Comm. Mass Spec. 2009, 23, 4013–4018. [Google Scholar] [CrossRef]
- Oo, C.W.; Pizzi, A.; Pasch, H.; Kassim, M.J. Study on the structure of mangrove polyflavonoid tannins with MALDI-TOF mass spectrometry. J. Appl. Polym. Sci. 2008, 109, 963–967. [Google Scholar] [CrossRef]
- Montaudo, G.; Montaudo, M.S.; Samperi, F. Martix-assisted laser desorption/ionization mass spectrometry of polymers (MALDI-MS). In Mass Spectrometry of Polymers; Montaudo, G., Lattimer, R.P., Eds.; CRC Press: Boca Raton, FL, 2002; pp. 419–521. [Google Scholar]
- Xiang, P.; Lin, Y.; Lin, P.; Xiang, C.; Yang, Z.; Lu, Z. Effect of cationization reagents on the matrix-assisted laser desorption/ionization time-of-flight mass spectrum of Chinese gallotannins. J. Appl. Polym. Sci. 2007, 105, 859–864. [Google Scholar] [CrossRef]
- Oyaizu, M. Studies on products of browning reactions: Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. 1986, 44, 307–315. [Google Scholar] [CrossRef]
- Soare, J.R.; Dinis, T.C.P.; Cunha, A.P.; Almeida, L. Antioxidant activities of some extracts of Thymus zygis. Free Radic. Res. 1997, 26, 469–478. [Google Scholar] [CrossRef]
- Kumaran, A.; Karunakaran, J. In vitro antioxidant activities of methanol extracts of five Phyllanthus species from India. Food. Sci. Technol. 2007, 40, 344–352. [Google Scholar] [CrossRef]
- Meir, S.; Kanner, J.; Akiri, B.; Philosoph-Hadas, S. Determination and involvement of aqueous reducing compounds in oxidative defense systems of various senescing leaves. J. Agric. Food Chem. 1995, 43, 1813–1819. [Google Scholar] [CrossRef]
- Lin, Y.M.; Liu, J.W.; Xiang, P.; Lin, P.; Ye, G.F.; Sternberg, L. daS. L. Tannin dynamics of propagules and leaves of Kandelia candel and Bruguiera gymnorrhiza in the Jiulong River Estuary, Fujian, China. Biogeochemistry 2006, 78, 343–359. [Google Scholar] [CrossRef]
- Graham, H.D. Stabilization of the Prussian blue color in the determination of polyphenols. J. Agric. Food Chem. 1992, 40, 801–805. [Google Scholar] [CrossRef]
- Terrill, T.H.; Rowan, A.M.; Douglas, G.B.; Barry, T.N. Determination of extractable and bound condensed tannin concentrations in forage plants, protein concentrate meals and cereal grains. J. Sci. Food Agric. 1992, 58, 321–329. [Google Scholar] [CrossRef]
- Xiang, P.; Lin, Y.M.; Lin, P.; Xiang, C. Effects of adduct ions on matrix-assisted laser desorption/ionization time of flight mass spectrometry of condensed tannins: A prerequisite knowledge. Chin. J. Anal. Chem. 2006, 34, 1019–1022. [Google Scholar] [CrossRef]
- Braca, A.; De Tommasi, N.; Di Bari, L.; Pizza, C.; Politi, M.; Morelli, I. Antioxidant principles from Bauhinia tarapotensis. J. Nat. Prod. 2001, 64, 892–895. [Google Scholar]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar]
© 2010 by the authors;
Share and Cite
Wei, S.-D.; Zhou, H.-C.; Lin, Y.-M.; Liao, M.-M.; Chai, W.-M. MALDI-TOF MS Analysis of Condensed Tannins with Potent Antioxidant Activity from the Leaf, Stem Bark and Root Bark of Acacia confusa. Molecules 2010, 15, 4369-4381. https://doi.org/10.3390/molecules15064369
Wei S-D, Zhou H-C, Lin Y-M, Liao M-M, Chai W-M. MALDI-TOF MS Analysis of Condensed Tannins with Potent Antioxidant Activity from the Leaf, Stem Bark and Root Bark of Acacia confusa. Molecules. 2010; 15(6):4369-4381. https://doi.org/10.3390/molecules15064369
Chicago/Turabian StyleWei, Shu-Dong, Hai-Chao Zhou, Yi-Ming Lin, Meng-Meng Liao, and Wei-Ming Chai. 2010. "MALDI-TOF MS Analysis of Condensed Tannins with Potent Antioxidant Activity from the Leaf, Stem Bark and Root Bark of Acacia confusa" Molecules 15, no. 6: 4369-4381. https://doi.org/10.3390/molecules15064369
APA StyleWei, S. -D., Zhou, H. -C., Lin, Y. -M., Liao, M. -M., & Chai, W. -M. (2010). MALDI-TOF MS Analysis of Condensed Tannins with Potent Antioxidant Activity from the Leaf, Stem Bark and Root Bark of Acacia confusa. Molecules, 15(6), 4369-4381. https://doi.org/10.3390/molecules15064369