Antiosteoporotic Effects and Proteomic Characterization of the Target and Mechanism of an Er-Xian Decoction on Osteoblastic UMR-106 and Osteoclasts Induced From RAW264.7
Abstract
:1. Introduction
2. Results and Discussion
2.1. Stimulatory effects on osteoblastic UMR-106 cells
2.2. Inhibitory effects on osteoclasts induced from RAW264.7
2.3. Protein expression profile in EXD-treated osteoblasts and osteoclasts
Spot | NCBI Accession number | Target protein | Theoretical Mr (kDa)/pI | Protein Score | Matching peptides (no.) | Fold difference |
---|---|---|---|---|---|---|
Osteoblastic UMR 106 cells | ||||||
1 | 11560024 | Heat shock protein 1 | 60.9/5.91 | 431 | 11 | +2.28 |
2 | 754208 | High mobility group protein(Hmgb1) | 24.9/5.62 | 58 | 10 | +2.64 |
3 | 1169376 | Acidic ribosomal phosphoprotein P0 | 34.2/5.91 | 363 | 15 | +2.18 |
4 | 27693390 | histone 2 | 13.9/10.31 | 114 | 4 | +5.14 |
5 | 76779821 | Carbonyl reductase 1(NADPH) | 30.6/8.22 | 329 | 16 | +2.02 |
6 | 9506411 | ATP synthase | 18.9/6.17 | 230 | 10 | +2.17 |
7 | 6978487 | Aldolase A | 39.3/8.31 | 304 | 10 | +2.43 |
8 | 31982030 | Rho GDP dissociation inhibitor (GDI) alpha | 23.4/5.12 | 520 | 9 | +2.79 |
9 | 31377484 | Carbonic anhydrase 3 | 29.4/6.89 | 135 | 9 | -2.70 |
10 | 6679299 | Prohibitin | 29.8/ 5.57 | 766 | 14 | -3.75 |
11 | 28849947 | Hemiferrin, transferrin-like protein | 24.1/7.86 | 105 | 6 | -2.22 |
12 | 83320094 | Far upstream element (FUSE) binding protein | 67.2/7.18 | 344 | 21 | -2.50 |
Osteoclasts induced from RAW 264.7 cells | ||||||
1 | 2078001 | Vimentin | 51.5/4.96 | 138 | 7 | +3.09 |
2 | 112293264 | Protein disulfide isomerase associated 3 | 56.6/5.88 | 66 | 7 | +6.95 |
3 | 112293264 | Protein disulfide isomerase associated 3 | 56.6/5.88 | 59 | 5 | +4.47 |
4 | 191765 | Alpha-fetoprotein | 47.2/5.47 | 77 | 3 | +13.03 |
5 | 683793 | Calnexin | 64.9/4.48 | 86 | 2 | -2.19 |
2.4. Identification of the differentially expressed proteins
3. Experimental
3.1. Reagents
3.2. Preparation of EXD and quality analysis
3.3. Proliferation assay, ALP activity and bone nodules of osteoblastic UMR-106 cells
3.4. Induction of osteoclast from RAW264.7 cell
3.5. Assay of the TRAP activity, cytotoxicity and bone resorption of osteoclasts
3.6. Extraction of cell protein
3.7. Two-dimensional electrophoresis (2-DE) and gel analysis
3.8. Matrix-assisted laser desorption/ionization-time of flight/mass spectrometry (MALDI-TOF/MS) analysis and database search
3.9. Statistical analyses
4. Concolusions
Acknowledgments
References
- Wang, C.H.; Zhang, Z.H.; Ma, J. Treatment of 50 cases of osteoporosis with Er-Xian Decoction. Shanxi J. Traditional Chin. Med. 1998, 19, 205. [Google Scholar]
- Liu, Q.; Shi, J.R.; Yang, Y.; Fang, Z.Q.; Liang, S.H.; Guo, R.X. Effects on secretory function of rat gonad by Er-Xian Decoction and its disassembled prescriptions. China J. Chin. Mater. Med. 2005, 30, 1023–1026. [Google Scholar]
- Nian, H.; Qin, L.P.; Zhang, Q.Y.; Zheng, H.C.; Yu, Y.; Huang, B.K. Antiosteoporotic activity of Er-Xian Decoction, a traditional Chinese herbal formula, in ovariectomized rats. J. Ethnopharmacol. 2006, 108, 96–102. [Google Scholar] [CrossRef]
- Qin, L.P.; Han, T.; Zhang, Q.Y.; Cao, D.P.; Nian, H.; Rahman, K.; Zheng, H.C. Antiosteoporotic chemical constituents from Er-Xian Decoction, a traditional Chinese herbal formula. J. Ethnopharmacol. 2008, 118, 271–279. [Google Scholar] [CrossRef]
- Xing, L.; Boyce, B.F. Regulation of apoptosis in osteoclasts and osteoblastic cells. Biochem. Biophs. Res. Commun. 2005, 328, 709–720. [Google Scholar] [CrossRef]
- Lindquist, S.; Craig, E.A. The heat-shock proteins. Annu. Rev. Genet. 1988, 22, 631–677. [Google Scholar] [CrossRef]
- Yang, J.; Shah, R.; Robling, A.G.; Templeton, E.; Yang, H.; Tracey, K.J.; Bidwell, J.P. HMGB1 is a bone-active cytokine. J. Cell. Physiol. 2008, 214, 730–739. [Google Scholar] [CrossRef]
- Tchórzewski, M.; Krokowski, D.; Rzeski, W.; Issinger, O.G.; Grankowski, N. The subcellular distribution of the human ribosomal "stalk" components: P1, P2 and P0 proteins. Int. J. Biochem. Cell Biol. 2003, 35, 203–211. [Google Scholar] [CrossRef]
- Mariño-Ramírez, L.; Kann, M.G.; Shoemaker, B.A.; Landsman, D. Histone structure and nucleosome stability. Expert Rev. Proteomics 2005, 2, 719–729. [Google Scholar] [CrossRef]
- Merkwirth, C.; Langer, T. Prohibitin function within mitochondria: Essential roles for cell proliferation and cristae morphogenesis. Biochem. Biophs. Acta-Mol. Cell Res. 2009, 1793, 27–32. [Google Scholar] [CrossRef]
- Forrest, G.L.; Gonzalez, B. Carbonyl reductase. Chem. Biol. Interact. 2000, 129, 21–40. [Google Scholar] [CrossRef]
- Pedersen, P.L. Transport ATPases: structure, motors, mechanism and medicine: a brief overview. J. Bioenerg. Biomembr. 2005, 37, 349–357. [Google Scholar] [CrossRef]
- Valis, K.; Neubauerova, J.; Man, P.; Pompach, P.; Vohradsky, J.; Kovar, J. VDAC2 and aldolase A identified as membrane proteins of K562 cells with increased expression under iron deprivation. Mol. Cell. Biochem. 2008, 311, 225–231. [Google Scholar] [CrossRef]
- Ishizaki, H.; Togawa, A.; Tanaka-Okamoto, M.; Hori, K.; Nishimura, M.; Hamaguchi, A.; Imai, T.; Takai, Y.; Miyoshi, J. Defective chemokine-directed lymphocyte migration and development in the absence of Rho guanosine diphosphate-dissociation inhibitors alpha and beta. J. Immunol. 2006, 177, 8512–8521. [Google Scholar]
- Lehenkari, P.; Hentunen, T.A.; Laitala-Leinonen, T.; Tuukkanen, J.; Väänänen, H.K. Carbonic anhydrase II plays a major role in osteoclast differentiation and bone resorption by affecting the steady state intracellular pH and Ca2+. Exp. Cell Res. 1998, 242, 128–137. [Google Scholar] [CrossRef]
- Kim, S.H.; Jun, S.; Jang, H.S.; Lim, S.K. Identification of parathyroid hormone-regulated proteins in mouse bone marrow cells by proteomics. Biochem. Biophs. Res. Commun. 2005, 330, 423–429. [Google Scholar] [CrossRef]
- Binkert, C.; Demetriou, M.; Sukhu, B.; Szweras, M.; Tenenbaum, H.C.; Dennis, J.W. Regulation of osteogenesis by fetuin. J. Biol. Chem. 1999, 274, 28514–28520. [Google Scholar]
- Veijola, J.; Pettersson, R.F. Transient association of calnexin and calreticulin with newly synthesized G1 and G2 glycoproteins of uukuniemi virus (family Bunyaviridae). J. Virol. 1999, 73, 6123–6127. [Google Scholar]
- Delom, F.; Fessart, D.; Chevet, E. Regulation of calnexin sub-cellular localization modulates endoplasmic reticulum stress-induced apoptosis in MCF-7 cells. Apoptosis 2007, 12, 293–305. [Google Scholar] [CrossRef]
- Owen, T.A.; Aronow, M.; Shalhoub, V.; Barone, L.M.; Wilming, L.; Tassinari, M.S.; Kennedy, M.B.; Pockwinse, S.; Lian, J.B.; Stein, G.S. Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationship in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J. Cell. Physiol. 1990, 143, 420–430. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Vignesh, R.C.; Sitta Djody, S.; Jayasudha, E.; Gopalakrishnan, V.; Ilangovan, R.; Balaganesh, M.; Veni, S.; Sridhar, M.; Srinivasan, N. Effect of ethanol on human osteosarcoma cell proliferation, differentiation and mineralization. Toxicology 2006, 220, 63–70. [Google Scholar] [CrossRef]
- Collin-Osdoby, P.; Yu, X.; Zheng, H; Osdoby, P. RANKL-mediated osteoclast formation from murine RAW 264.7 cells. Methods Mol. Med. 2003, 80, 153–166. [Google Scholar]
- Katherine, N.W.; Gabriela, M.; Wade, E.H.; Clifford, M.T.; Timothy, J.H.; Ying, X.; Christine, L.H.; Nikki, R.D; Audrey, G.W.; David, E.F. Linkage of M-CSF Signaling to Mitf, TFE3, and the Osteoclast Defect in Mitfmi/mi Mice. Mol. Cell. 2001, 8, 749–758. [Google Scholar] [CrossRef]
- Tibor, B. A simple Azo-Dye method for histochemical demonstration of acid phosphatase. Nature 1960, 187, 248–249. [Google Scholar] [CrossRef]
- Pfeilschifter, J.; Chenu, C.; Bird, A.; Mundy, G.R.; Roodman, G.D. Interleukin-1 and tumor necrosis factor stimulate the formation of human osteoclastlike cells in vitro. J. Bone Min. Res. 1989, 4, 113–118. [Google Scholar]
- Zambonin, Z.A.; Teti, A.; Primavera, M.V. Isolated osteoclasts in primary culture: first observation on structure and survival in culture media. Anat. Embryol. 1982, 165, 405–413. [Google Scholar] [CrossRef]
- Zhengm, X.J.; Hong, L.L.; Shi, L.X.; Guo, J.Q.; Sun, Z.; Zhou, J.Y. Proteomic analysis of host cells infected with infectious bursal disease virus. Mol. Cell. Proteomics 2008, 7, 612–625. [Google Scholar]
- Sample Availability: Not Available.
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an Open Access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Zhu, Z.; Xue, L.-M.; Han, T.; Jiao, L.; Qin, L.-P.; Li, Y.-S.; Zheng, H.-C.; Zhang, Q.-Y. Antiosteoporotic Effects and Proteomic Characterization of the Target and Mechanism of an Er-Xian Decoction on Osteoblastic UMR-106 and Osteoclasts Induced From RAW264.7. Molecules 2010, 15, 4695-4710. https://doi.org/10.3390/molecules15074695
Zhu Z, Xue L-M, Han T, Jiao L, Qin L-P, Li Y-S, Zheng H-C, Zhang Q-Y. Antiosteoporotic Effects and Proteomic Characterization of the Target and Mechanism of an Er-Xian Decoction on Osteoblastic UMR-106 and Osteoclasts Induced From RAW264.7. Molecules. 2010; 15(7):4695-4710. https://doi.org/10.3390/molecules15074695
Chicago/Turabian StyleZhu, Zheng, Li-Ming Xue, Ting Han, Lei Jiao, Lu-Ping Qin, Yu-Shan Li, Han-Chen Zheng, and Qiao-Yan Zhang. 2010. "Antiosteoporotic Effects and Proteomic Characterization of the Target and Mechanism of an Er-Xian Decoction on Osteoblastic UMR-106 and Osteoclasts Induced From RAW264.7" Molecules 15, no. 7: 4695-4710. https://doi.org/10.3390/molecules15074695
APA StyleZhu, Z., Xue, L. -M., Han, T., Jiao, L., Qin, L. -P., Li, Y. -S., Zheng, H. -C., & Zhang, Q. -Y. (2010). Antiosteoporotic Effects and Proteomic Characterization of the Target and Mechanism of an Er-Xian Decoction on Osteoblastic UMR-106 and Osteoclasts Induced From RAW264.7. Molecules, 15(7), 4695-4710. https://doi.org/10.3390/molecules15074695