Antioxidant Activities of Various Extracts from Artemisisa selengensis Turcz (LuHao)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Total phenolic acid and flavonoid contents
Extracts/fractions | Total phenolic acidsa | Total flavonoidsb |
---|---|---|
WE | 557.3 ± 5.5 | 549.9 ± 3.6 |
70% ethanol extract | 311.0 ± 3.1 | 987.0 ± 2.9 |
95% ethanol extract | 165.2 ± 0.6 | 406.5 ± 4.1 |
PE | 8.0 ± 0.6 | 11.7 ± 0.4 |
EA | 39.6 ± 4.1 | 53.5 ± 1.2 |
BU | 34.3 ± 0.6 | 76.9 ± 0.7 |
WT | 414.5 ± 2.3 | 223.9 ± 5.5 |
2.2. In vitro total antioxidant capacity of extracts from AST
2.2.1. Total antioxidant power of extracts/fractions from AST by the FRAP assay
2.2.2. Free radical (DPPH, ABTS) scavenging ability of the extracts/fractions from Artemisia selegensis Turcz
Extracts/fractions | Free radical scavenging ability | |
---|---|---|
DPPH a | ABTS b | |
WE | 1081.7 ± 59.7 | 886.9 ± 3.3 |
70% ethanol extract | 823.8 ± 33.4 | 583.3 ± 2.5 |
95% ethanol extract | 477.7 ± 15.5 | 244.4 ± 2.5 |
PEE | 15.8 ± 0.8 | 4.5 ± 0.3 |
EA | 208.5 ± 4.6 | 99.6 ± 0.9 |
BU | 143.6 ± 2.6 | 79.0 ± 1.1 |
WT | 536.6 ± 16.9 | 362.1 ± 1.1 |
2.3. Antioxidant assay in vivo
Groups | n | SOD activity (U/mL) | MDA content (nmol/mL) |
---|---|---|---|
nd+ D- gal | 10 | 140.4 ± 19.4 | 8.4 ± 1.1 |
nd+ D- gal +0.4% Vit C | 10 | 188.3 ± 34.7** | 7.7 ± 1.2 |
nd+D- gal+12 g WE/kg | 10 | 209.7 ± 44.6** | 6.6 ± 1.3* |
nd+ D- gal+6 g WE/kg | 10 | 201.2 ± 45.4** | 7.9 ± 1.1 |
nd+ D- gal+3 g WE/kg | 10 | 192.2 ± 35.1** | 8.2 ± 1.0 |
3. Experimental Section
3.1. Plant material
3.2. Chemicals
3.3. Extraction and fractionation of antioxidants
3.4. Determination of total phenolic acids
3.5. Determination of flavonoids
3.6. Determination of antioxidant capacity in vitro
3.6.1. Ferric Reducing Antioxidant Power (FRAP) assay
3.6.2. DPPH radical scavenging assay
3.6.3. ABTS radical cation assay
3.7. Antioxidant assay in vitro
3.7.1. Animals and diets
3.7.2. Preparation of serum
3.7.3. Determination of antioxidant enzyme activities and lipid peroxidation
3.8. Statistical analysis of data
4. Conclusions
Acknowledgements
- Samples Availability: Samples of the compounds are available from the authors.
References and Notes
- Scarborough, P.; Allender, S.; Rayner, M.; Goldacre, M. Validation of model-based estimates (synthetic estimates) of the prevalence of risk factors for coronary heart disease for wards in England. Health Place 2009, 1, 54–60. [Google Scholar]
- Skuladottir, H.; Tjoenneland, A.; Overvad, K.; Stripp, C.; Olsen, J.H. Does high intake of fruit and vegetables improve lung cancer survival? Lung Cancer 2006, 3, 267–273. [Google Scholar]
- Ling, L.T.; Radhakrishnan, A.K.; Subramaniam, T.; Cheng, H.M.; Palanisamy, U.D. Assessment of Antioxidant Capacity and Cytotoxicity of Selected Malaysian Plants. Molecules 2010, 15, 2139–2151. [Google Scholar] [CrossRef]
- Vinson, J.A.; Dabbagh, Y.A.; Serry, M.M.; Jang, J. Plant flavonoids, especially tea flavonols, are powerful antioxidants using an in vitro oxidation model for heart disease. J. Agric. Food Chem. 1995, 43, 2800–2802. [Google Scholar] [CrossRef]
- Amarowicz, R.; Estrella, I.; Hernández, T.; Robredo, S.; Troszyńska, A.; Kosińska, A.; Ronald, B. Free radical-scavenging capacity, antioxidant activity, and phenolic composition of green lentil (Lens culinaris). Food Chem. 2010, 3, 705–711. [Google Scholar]
- Velioglu, Y.S.; Mazza, G.; Gao, L.; Oomah, B.D. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J. Agric. Food Chem. 1998, 10, 4113–4117. [Google Scholar]
- Yoo, K.M.; Lee, C.H.; Lee, H.; Moon, B.; Lee, C.Y. Relative antioxidant and cytoprotective activities of common herbs. Food Chem. 2008, 3, 929–936. [Google Scholar]
- Tavares, L.; Carrilho, D.; Tyagi, M.; Barata, D.; Serra, A.T.; Duarte, C.M.M.; Duarte, R.O.; Feliciano, R.P.; Bronze, M.R.; Chicau, P.; Espírito-Santo, M.D.; Ferreira, R.B.; Santos, C.N. Antioxidant Capacity of Macaronesian Traditional Medicinal Plants. Molecules 2010, 15, 2576–2592. [Google Scholar]
- Liu, W.; Dong, J.B. Exploitation of Artemisia Selegensis Turcz. Chinese Food Nutr. 2006, 7, 22–23. (In Chinese) [Google Scholar]
- Ye, W.f. Oxidative Stability of Extract from Artemisia Selegensis Turcz. J. Jiangxi Coll. 2001, 6, 38–39. (In Chinese) [Google Scholar]
- Shao, Z.L.; Huang, H.P.; Gao, S.L. Research progress of Artemisia Selegensis Turcz. Strait Pharm. J. 2010, 1, 67–69. (In Chinese) [Google Scholar]
- Müller, L.; Gnoyke, S.; Popken, A.M.; Bohm, V. Antioxidant capacity and related parameters of different fruit formulations. LWT-Food Sci. Technol. 2010, 6, 992–999. [Google Scholar]
- Jaitak, V.; Sharma, K.; Kalia, K.; Kumar, N.; Singh, H.P.; Kaul, V.K.; Singh, B. Antioxidant activity of Potentilla fulgens: An alpine plant of western Himalaya. J. Food Compost Anal. 2010, 2, 142–147. [Google Scholar]
- Firuzi, O.; Mladenka, P.; Riccieri, V.; Spadaro, A.; Petrucci, R.; Marrosu, G.; Saso, L. Parameters of oxidative stress status in healthy subjects: Their correlations and stability after sample collection. J. Clin. Lab. Anal. 2006, 4, 139–148. [Google Scholar]
- Costa, R.M.; Magalhaes, A.S.; Pereira, J.A.; Valentao, P.; Carvalho, M.; Silva, B.M. Evaluation of free radical-scavenging and antihemolytic activities of quince (Cydonia oblonga) leaf: A comparative study with green tea (Camellia sinensis). Food Chem.Toxicol. 2009, 4, 860–865. [Google Scholar]
- Edreva, A. Generation and scavenging of reactive oxygen species in chloroplasts: a submolecul arapproach. Agric. Ecosyst. Environ. 2005, 2, 119–133. [Google Scholar] [CrossRef]
- Park, J.; Ryu, J.; Jin, L.H.; Bahn, J.H.; Kim, J.A.; Yoon, C.S.; Kim, D.W.; Han, K.H.; Eum, W.S.; Kwon, H.Y.; Kang, T.C.; Won, M.H.; Kang, J.H,; Cho, S.W.; Choi, S.Y. 9-polylysine protein transduction domain: Enhanced penetration efficiency of superoxide dismutase into mammalian cells and skin. Mol. Cells 2002, 2, 202–208. [Google Scholar]
- Kiruthiga, P.V.; Shafreen, R.B.; Pandian, S.K.; Arun, S.; Govindu, S.; Devi, K.P. Protective effect of silymarin on erythrocyte haemolysate against benzo(a)pyrene and exogenous reactive oxygen species (H2O2) induced oxidative stress. Chemosphere 2007, 68, 1511–1518. [Google Scholar] [CrossRef]
- Linden, A.; Gulden, M.; Martin, H.J.; Maser, E.; Seibert, H. Peroxide-induced cell death and lipid peroxidation in C6 glioma cells. Toxicol. In Vitro 2008, 22, 1371–1376. [Google Scholar] [CrossRef]
- Garcia, Y.J.; Rodriguez-Malaver, A.J.; Penaloza, N. Lipid peroxidation measurement by thiobarbituric acid assay in rat cerebellar slices. J. Neurosci. Methods 2005, 144, 127–135. [Google Scholar] [CrossRef]
- Medina-Remon, A.; Barrionuevo-Gonzalez, A.; Zamora-Ros, R.; Andres-Lacueva, C.; Estruch, R.; Martinez-Gonzalez, M.A.; Diez-Espino, J.; Lamuela-Raventos, R.M. Rapid Folin-Ciocalteu method using microtiter 96-well plate cartridges for solid phase extraction to assess urinary total phenolic compounds, as a biomarker of total polyphenols intake. Anal. Chim. Acta 2009, 1, 54–60. [Google Scholar]
- Grubesic, R.J; Vukovic, J.; Kremer, D.; Vladimir-Knezevic, S. Flavonoid content assay: Prevalidation and application on Plantago L. species. Acta Chim. Slov. 2007, 2, 397–406. [Google Scholar]
- Szeto, Y.T.; Chu, W.K.; Benzie, I.F.F. Antioxidants in fruits and vegetables: a study of cellular availability and direct effects on human DNA. Biosci. Biotechnol. Biochem. 2006, 10, 2551–2555. [Google Scholar]
- Kaji, H.; Inukai, Y.; Maiguma, T.; Ono, H.; Teshima, D.; Hiramoto, K.; Makino, K. Radical scavenging activity of bisbenzylisoquinoline alkaloids and traditional prophylactics against chemotherapy-induced oral mucositis. J. Clin. Pharm. Ther. 2009, 2, 197–205. [Google Scholar]
- Yen, G.C.; Duh, P.D. Scavenging effect of methanolic extracts of peanut hulls on free-radical and active oxygen species. J. Agric. Food Chem. 1994, 3, 629–632. [Google Scholar]
- Bernatoniene, J.; Masteikova, R.; Majiene, D.; Savickas, A.; Kevelaitis, E.; Bernatoniene, R.; Dvorackova, K.; Civinskiene, G.; Lekas, R.; Vitkevicius, K.; Peciura, R. Free radical-scavenging activities of Crataegus monogyna extracts. Medicina (Kaunas) 2008, 9, 706–712. [Google Scholar]
- Kin, H.; Zhao, Z.Q.; Sun, H.Y.; Wang, N.P.; Corvera, J.S.; Halkos, M.E. Postconditioning attenuates myocardial ischemia-reperfusion injury by inhibiting events in the early minutes of reperfusion. Cardiovasc. Res. 2004, 1, 74–85. [Google Scholar]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an Open Access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Shi, F.; Jia, X.; Zhao, C.; Chen, Y. Antioxidant Activities of Various Extracts from Artemisisa selengensis Turcz (LuHao). Molecules 2010, 15, 4934-4946. https://doi.org/10.3390/molecules15074934
Shi F, Jia X, Zhao C, Chen Y. Antioxidant Activities of Various Extracts from Artemisisa selengensis Turcz (LuHao). Molecules. 2010; 15(7):4934-4946. https://doi.org/10.3390/molecules15074934
Chicago/Turabian StyleShi, Feng, Xiaobin Jia, Chenglei Zhao, and Yan Chen. 2010. "Antioxidant Activities of Various Extracts from Artemisisa selengensis Turcz (LuHao)" Molecules 15, no. 7: 4934-4946. https://doi.org/10.3390/molecules15074934
APA StyleShi, F., Jia, X., Zhao, C., & Chen, Y. (2010). Antioxidant Activities of Various Extracts from Artemisisa selengensis Turcz (LuHao). Molecules, 15(7), 4934-4946. https://doi.org/10.3390/molecules15074934