Synthesis, Molecular Structure, Spectral Properties and Antifungal Activity of Polymethylene-α,ω-bis(N,N- dimethyl-N-dodecyloammonium Bromides)
Abstract
:1. Introduction
2. Results and Discusion
2.1. Synthesis
2.2. DFT calculations
2.3. FTIR spectra study
2.4. 1H-NMR and 13C-NMR spectra
2.5. Antimicrobial activity
3. Experimental
3.1. General
3.2. Computational details
3.3. Antimicrobial study
3.4. Synthesis
4. Conclusions
Acknowledgments
References and Notes
- Domagk, G. A new class of disinfectants. Dtsch. Med. Wochenscher 1935, 61, 829–832. [Google Scholar] [CrossRef]
- Block, S.S. Disinfection, Sterilization, and Preservation, 5th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2001. [Google Scholar]
- Dega-Szafran, Z.; Dulewicz, E.; Brycki, B. Synthesis and characterization of 1-carbalkoxymethyl-4-hydroxy-1-methylpiperidinium chlorides. ARKIVOC 2007, vi, 90–102. [Google Scholar]
- Erickson, J.G.; Keps, J.S. Reactions of Long-chain Amines. IV. Preparation of N-Alkylpyrrolidines, N,N-Dialkylpyrrolidinium Chlorides and N,N-Dialkylpiperidinium Chlorides. J. Am. Chem. Soc. 1955, 77, 485–456. [Google Scholar] [CrossRef]
- Ringdahl, B.; Roch, M.; Jenden, D.J. Tertiary 3- and 4-Haloalkylamine Analogues of Oxotremorine as Prodrugs of Potent Muscarinic Agonists. J. Med. Chem. 1988, 31, 160–164. [Google Scholar] [CrossRef] [PubMed]
- Chukhadzhyan, É.O.; Chukhadzhyan, Él.O.; Shakhatuni, K.G.; Gevorkyan, N.T. Synthesis of Chlorine-Substituted Naphto- and Benzisoindolinium Salts by Base-catalyzed Intramolecular Cyclization of Ammonium Salts. Chem. Heterocycl. Compound. 1998, 34, 912–915. [Google Scholar] [CrossRef]
- Schmitt, K.D. Surfactant-Mediated Phase Transfer as an Alternative to Propanesultone Alkylation. Formation of a New Class of Zwitterionic Surfactants. J. Org. Chem. 1995, 60, 5474–5479. [Google Scholar] [CrossRef]
- Venkataramu, S.D.; Macdonell, G.D.; Purdum, W.R.; Dilbeck, G.A.; Berlin, K.D. Polyphosphoric Acid Catalyzed Cyclization of Aralkenyl-Substituted Quaternary Ammonium Salts. J. Org. Chem. 1977, 42, 2195–2200. [Google Scholar] [CrossRef]
- Walker, M.A. An Unusual Tandem Cyclization-Stevens Rearrangement Mediated by Ph3P/DEAD or Bu3P/ADDP. Tetrahedron Lett. 1996, 37, 8133–8136. [Google Scholar] [CrossRef]
- Glaeske, K.W.; West, F.G. Chirality Transfer from Carbon to Nitrogen to Carbon via Cyclic Ammonium Ylides. Org. Lett. 1999, 1, 31–33. [Google Scholar] [CrossRef]
- Manivannan, G. Disinfection and Decontamination: Principles, Applications and Related Issues; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2008. [Google Scholar]
- Menger, F.M.; Keiper, J.S. Gemini surfactants. Angew. Chem. Int. Ed. 2000, 39, 1906–1920. [Google Scholar] [CrossRef]
- Paulus, W. Directory of Microbiocides for the Protection of Materials; Springer: Dordrecht, The Netherlands, 2005. [Google Scholar]
- Zana, R.; Xia, J. Gemini Surfactants. Synthesis, Interfacial and Solution PhaseBehavior, and Applications; Marcel Dekker: New York, NY, USA, 2004. [Google Scholar]
- Fraise, A.P.; Lambert, P.A.; Maillard, J.-Y. Russell, Hugo & Ayliffe’s Principles and Practice of Disinfection, Preservation and Sterilization, 4th ed.; Blackwell Publishing: Malden, MA, USA, 2004. [Google Scholar]
- Park, E.J.; Kim, M.H.; Kim, D.Y. Enantioselective Alkylation of â-Keto Esters by Phase-Transfer Catalysis Using Chiral Quaternary Ammonium Salts. J. Org. Chem. 2004, 69, 6897–6899. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.Y.; Huh, S.Ch.; Kim, S.M. Enantioselective Michael reaction of malonates and chalcones by phase-transfer catalysis using chiral quaternary ammonium salt. Tetrahedron Lett. 2001, 42, 6299–6301. [Google Scholar] [CrossRef]
- Kim, D.Y.; Park, E.J. Catalytic Enantioselective Fluorination of α-Keto Esters by Phase-Transfer Catalysis Using Chiral Quaternary Ammonium Salts. Org. Lett. 2002, 4, 545–547. [Google Scholar] [CrossRef] [PubMed]
- Niess, B.; Jorgensen, K.A. The asymmetric vinylogous Mannich reaction of dicyanoalkylidenes with α-amido sulfones under phase-transfer conditions. Chem. Commun. 2007, 1620–1622. [Google Scholar] [CrossRef] [PubMed]
- Orglmeister, E.; Mallat, T.; Baiker, A. Quaternary ammonium derivatives of cinchonidine as new chiral modifiers for platinum. J. Catal. 2005, 233, 333–341. [Google Scholar] [CrossRef]
- Breistein, P.; Karlsson, S.; Hendenström, E. Chiral pyrrolidinium salts as organocatalysts in the stereoselective 1,4-conjugate addition of N-methylpyrrole to cyclopent-1-ene carbaldehyde. Tetahedron: Asymetry 2006, 17, 107–111. [Google Scholar] [CrossRef]
- Fuijmori, T.; Fujiii, K.; Kanzaki, R.; Chiba, K.; Yamamoto, H.; Umebayashi, Y.; Ishiguro, S. Conformational structure of room temperature ionic liquid N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl) imide — Raman spectroscopic study and DFT calculations. J. Mol. Liq. 2007, 131-132, 216–224. [Google Scholar] [CrossRef]
- Yoshinawa-Fujita, M.; Johansson, K.; Newman, P.; MacFarlane, D.R.; Forsyth, M. Novel Lewis-base ionic liquids replacing typical anions. Tetrahedron Lett. 2006, 47, 2755–2758. [Google Scholar] [CrossRef]
- Henderson, W.A.; Passerini, S. Phase Behavior of Ionic Liquid-LiX Mixtures: Pyrrolidinium Cations and TFSI- Anions. Chem. Mater. 2004, 16, 2881–2758. [Google Scholar] [CrossRef]
- Sun, J.; MacFarlane, D.R.; Forsyth, M. A new family of ionic liquids based on the 1-alkyl-2-methyl pyrrolinium cation. Electrochim. Acta 2003, 48, 1707–1711. [Google Scholar] [CrossRef]
- MacFarlane, D.R.; Forsyth, S.A.; Golding, J.; Deacon, G.B. Ionic liquids based on imidazolium, ammonium and pyrrolidinium salts of the dicyanamide anion. Green Chem. 2002, 4, 444–448. [Google Scholar] [CrossRef]
- Sakaaebe, H.; Matsumoto, H. N-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl) imide (PP13–TFSI) – novel electrolyte base for Li battery. Electrochem. Commun. 2003, 5, 594–548. [Google Scholar] [CrossRef]
- Tigelaar, D.M.; Meador, M.A.B.; Bennett, W.R. Composite Electrolytes for Lithium Batteries: Ionic Liquids in APTES Cross-Linked Polymers. Macromolecules 2007, 40, 4159–4164. [Google Scholar] [CrossRef]
- Laatiris, A.; El Achouri, M.; Infante, M.R.; Bensouda, Y. Antibacterial activity, structure and CMC relationship of alkanediyl α,ω- bis(dimethylammonium bromide) surfactants. Microbiol. Res. 2008, 163, 645–650. [Google Scholar] [CrossRef] [PubMed]
- Manavathu, E.K.; Cutright, J.; Chandrasekar, P.H. Comparative study of susceptibilities of germinated and ungerminated conidia of Aspergillus fumigatus to various antifungal agents. J. Clin. Microbiol. 1999, 37, 858–861. [Google Scholar] [PubMed]
- Fraise, A.P.; Lambert, P.A.; Maillard, J.-Y. Russell, Hugo and Ayliffe’s Principles and Practice of Disinfection, Preservation and Sterilization; Blackwell Publishing: Malden, MA, USA, 2004. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.A.; Vreven, T., Jr.; Kudin, K.N.; Burant, J.C.; Millam, J.M.; Iyengar, S.S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G.A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.X.Li.; Knox, J.E.; Hratchian, H.P.; Cross, J.B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Ayala, P.Y.; Morokuma, K.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Zakrzewski, V.G.; Dapprich, S.; Daniels, A.D.; Strain, M.C.; Farkas, O.; Malick, D.K.; Rabuck, A.D.; Raghavachari, K.; Foresman, J.B.; Ortiz, J.V.; Cui, Q.; Baboul, A.G.; Clifford, S.; Cioslowski, J.; Stefanov, B.B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R.L.; Fox, D.J.; Keith, T.; Al-Laham, M.A.; Peng, C.Y.; Nanayakkara, A.; Challacombe, M.; Gill, P.M.W.; Johnson, B.; Chen, W.; Wong, M.W.; Gonzalez, C.; Pople, J.A. Gaussian 03, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2004. [Google Scholar]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals. J. Chem. Phys. 1997, 107, 8554–8560. [Google Scholar] [CrossRef]
- Hehre, W.J.; Random, L.; Schleyer, P.v.R.; Pople, J.A. Ab Initio Molecular Orbital Theory; Wiley: New York, NY, USA, 1986. [Google Scholar]
- Wolinski, K.; Hilton, J.F.; Pulay, P. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J. Am. Chem. Soc. 1990, 112, 8251–8260. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds (1-5) are available from the authors. |
Parameters | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Energy (a.u) | -6551.697749 | -6412.885113 | -6474.064183 | -6396.071637 | -6357.506938 |
Dipole moment (Debye) | 20.4558 | 17.1183 | 4.7632 | 7.1234 | 6.5095 |
Bond length (Å) | |||||
N+…Br- | 3.895 4.235 | 3.932 3.902 | 3.862 3.954 | 4.116 4.116 | 3.638 3.768 |
C(i)-H…Br- | 3.681 | 3.727 | 3.674 | 3.297 | 3.383 |
C(j)-H…Br- | 3.859 | 3.551 | 3.477 | 3.213 | 3.111 |
C(l)-H…Br- | 3.851 | 1.550 | |||
C(h)-H…Br- | 3.661 | 4.003 | |||
N-C(h) | 1.537 | 1.536 | 1.534 | 1.550 | |
N-C(i) | 1.506 | 1.501 | 1.503 | 1.536 | 1.529 |
N-C(j) | 1.520 | 1,540 | 1.539 | 1.541 | 1.550 |
C(j)-C(k) | 1.540 | 1.538 | 1.528 | ||
C(h)-C(g) | 1.533 | 1.535 | 1.533 | 1.541 | 1.544 |
Bond angle (o) | |||||
N-C(h)-C(g) | 115.7 | 116.4 | 116.2 | 114.5 | 114.5 |
N-C(j)-C(k) | 115.0 | 116.7 | 115.7 | 110.2 | - |
C(j)-N-C(h) | 110.0 | 113.0 | 111.6 | 108.2 | 110.8 |
C(i)-N-C(h) | 107.1 | 108.3 | 108.1 | 110.6 | 113.4 |
Dihedral angle (o) | |||||
N-C(h)-C(g)-C(f) | 167.4 | 177.8 | 179.9 | -179.4 | -174.0 |
N-C(j)-C(k)-C(l) | 160.0 | -158.9 | -179.9 | - | - |
C(i)-N-C(h)-C(g) | 168.7 | 56.6 | 175.4 | -69.7 | -49.1 |
C(i)-N-C(j)-C(k) | 43.7 | -176.4 | 148.5 | 161.4 | - |
C(a)-C(b)-C(c)-C(d) | 179.7 | -179.6 | 180.0 | 180.0 | 180.0 |
C(j)-N-C(h)-C(g) | 47 | 172.1 | 58.6 | 172.9 | -166.2 |
δexp. | δcalc | σcalc | δexp. | δcalc | σcalc | ||
Hexamethylene-1,6-bis(N,N-dimetyl-N-dodecyldodecylammonium bromide) (1) | |||||||
Carbon-13 | Proton | ||||||
C (a) | 13.84 | 14.98 | 199.37 | H (a) | 0.88 | 1.16 | 32.767 |
C (b) | 22.63 | 21.93 | 193.49 | H (b) | 1.25 | 1.27 | 32.644 |
C (c) | 31.60 | 30.49 | 186.25 | H(c) | 1.25 | 1.21 | 32.711 |
C (d) | 29.17 | 29.62 | 186.98 | H (d) | 1.25 | 1.22 | 32.699 |
C (e) | 29.17 | 29.35 | 191.11 | H (e) | 1.25 | 1.24 | 32.676 |
C (f) | 26.06 | 24.74 | 191.23 | H (f) | 1.25 | 1.22 | 32.704 |
C(g) C(h) C(i) C(j) C(k) C(l) a | 22.38 64.38 50.73 63.81 21.51 24.42 | 24.60 67.19 49.27 61.86 23.33 22.38 250.5599 | 155.19 170.35 159.70 192.31 193.11 | H(g) H(h) H(i) H(j) H(k) H(l) | 1.72 3.52 3.39 3.69 1.98 1.56 | 2.03 2.92 3.35 4.03 1.78 1.54 30.40303 | 31.787 30.790 30.308 29.54 732.06 832.339 |
b | -1.1816 | -0.892456 | |||||
r2 | 0.98999 | 0.93883 | |||||
Ethylene-1,2-bis-(N,N-dimethyl-N-dodecylammonium bromide) (5) | |||||||
Carbon-13 | Proton | ||||||
C (a) | 14.3 | 15.84 | 199.21 | H (a) | 0.88 | 1.24 | 32.732 |
C (b) | 22.99 | 22.64 | 192.97 | H (b) | 1.30 | 1.35 | 32.568 |
C (c) | 31.84 | 30.32 | 185.92 | H(c) | 1.25 | 1.29 | 32.648 |
C (d) | 29.53 | 29.62 | 186.56 | H (d) | 1.25 | 1.30 | 32.637 |
C (e) | 29.53 | 29.31 | 186.85 | H (e) | 1.25 | 1.31 | 32.620 |
C (f) | 26.20 | 24.67 | 191.10 | H (f) | 1.25 | 1.31 | 32.623 |
C(g) C(h) C(i) C(j) a | 22.60 65.54 51.29 56.51 | 23.77 62.89 50.24 60.78 232.9141 | 191.93 156.04 167.64 157.57 | H(g) H(h) H(i) H(j) | 1.81 3.67 3.43 4.55 | 1.33 3.69 3.11 4.71 22.6482 | 32.598 28.976 29.866 27.423 |
b | -1.0897 | -0.6541 | |||||
r2 | 0.98592 | 0.96714 |
Compound | Strains | |||
---|---|---|---|---|
A.niger ATCC 16404 | P.chrysogenum LOCK 0531 | A.niger LOCK 0439 | C.albicans ATCC 10231 | |
(1) | 0.12 | 0.06 | 0.12 | 0.015 |
(2) | 0.12 | 0.06 | 0.24 | 0.015 |
(3) | 0.15 | 0.095 | 0.375 | 0.037 |
(4) | 0.3 | 0.15 | 0.4 | 0.075 |
(5) | 0.3 | 0.15 | 0.4 | 0.075 |
Compound | Strains | |||
---|---|---|---|---|
A.niger ATCC 16404 | P.chrysogenum LOCK 0531 | A.niger LOCK 0439 | C.albicans ATCC 10231 | |
1 | 0.31 | 0.31 | 0.31 | 0.31 |
2 | 0.31 | 0.76 | 0.76 | 0.45 |
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Brycki, B.; Kowalczyk, I.; Kozirog, A. Synthesis, Molecular Structure, Spectral Properties and Antifungal Activity of Polymethylene-α,ω-bis(N,N- dimethyl-N-dodecyloammonium Bromides). Molecules 2011, 16, 319-335. https://doi.org/10.3390/molecules16010319
Brycki B, Kowalczyk I, Kozirog A. Synthesis, Molecular Structure, Spectral Properties and Antifungal Activity of Polymethylene-α,ω-bis(N,N- dimethyl-N-dodecyloammonium Bromides). Molecules. 2011; 16(1):319-335. https://doi.org/10.3390/molecules16010319
Chicago/Turabian StyleBrycki, Bogumil, Iwona Kowalczyk, and Anna Kozirog. 2011. "Synthesis, Molecular Structure, Spectral Properties and Antifungal Activity of Polymethylene-α,ω-bis(N,N- dimethyl-N-dodecyloammonium Bromides)" Molecules 16, no. 1: 319-335. https://doi.org/10.3390/molecules16010319
APA StyleBrycki, B., Kowalczyk, I., & Kozirog, A. (2011). Synthesis, Molecular Structure, Spectral Properties and Antifungal Activity of Polymethylene-α,ω-bis(N,N- dimethyl-N-dodecyloammonium Bromides). Molecules, 16(1), 319-335. https://doi.org/10.3390/molecules16010319