The Role of Adenosine Receptor Agonists in Regulation of Hematopoiesis
Abstract
:1. Introductory Remarks to the Problem of Adenosine Receptor Signaling
2. Hematological Effects of Non-Selective Activation of Adenosine Receptors
3. Hematological Effects of Selective Activation of Adenosine Receptors
4. Adenosine Receptors—Participation in Various Signaling Pathways
5. Possibilities of Practical Utilization of Adenosine Receptor Agonists in Clinical Hematology
Acknowledgements
References
- Drury, A.N.; Szent-Györgyi, A. The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J. Physiol. (London) 1929, 68, 213–237. [Google Scholar]
- Abbracchio, M.P. P1 and P2 receptors in cell growth and differentiation. Drug Dev. Res. 1996, 39, 393–406. [Google Scholar] [CrossRef]
- Linden, J. Molecular approach to adenosine receptors: Receptor-mediated mechanisms of tissue protection. Annu. Rev. Pharmacol. Toxicol. 2001, 41, 775–778. [Google Scholar] [CrossRef]
- Berne, R.M. Cardiac nucleotides in hypoxia – possible role in regulation of coronary blood flow. Am. J. Physiol. 1963, 204, 317–322. [Google Scholar]
- Newby, A.C. Adenosine and the concept of ‘retaliatory metabolites’. Trends Biochem. Sci. 1984, 9, 42–44. [Google Scholar] [CrossRef]
- Bruns, R.F. Role of adenosine in energy supply/demand balance. Nucleos. Nucleot. 1991, 10, 931–943. [Google Scholar] [CrossRef]
- Abbracchio, M.P.; Burnstock, G. Purinergic signalling: Pathophysiological roles. Jap. J. Pharmacol. 1998, 78, 113–145. [Google Scholar] [CrossRef]
- Poulsen, S.-A.; Quinn, R.J. Adenosine receptors: New opportunities for future drugs. Bioorgan. Med. Chem. 1998, 6, 619–641. [Google Scholar] [CrossRef]
- Olah, M.E.; Stiles, G.L. Adenosine receptor subtypes: Characterization and therapeutic regulation. Annu. Rev. Pharmacol. Toxicol. 1995, 35, 581–606. [Google Scholar] [CrossRef]
- Fredholm, B.B.; Arslan, G.; Halldner, L.; Kull, B.; Schulte, G.; Wasserman, W. Structure and function of adenosine receptors and their genes. Naunyn-Schmied. Arch. Pharmacol. 2000, 362, 364–374. [Google Scholar] [CrossRef]
- Fredholm, B.B.; Arslan, G.; Halldner, L; Kull, B.; Schulte, G.; Ådén, U.; Svenningsson, P. Adenosine receptor signaling in vitro and in vivo. Drug Dev. Res. 2001, 52, 274–282. [Google Scholar] [CrossRef]
- Klotz, K.-N. Adenosine receptors and their ligands. Naunyn-Schmied. Arch. Pharmacol. 2000, 362, 382–391. [Google Scholar] [CrossRef]
- Cronstein, B.N.; Bouma, M.G.; Becker, B.F. Purinergic mechanisms in inflammation. Drug Dev. Res. 1996, 39, 426–435. [Google Scholar] [CrossRef]
- Haskó, G.; Linden, J.; Cronstein, B.; Pacher, P. Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat. Rev. Drug Dis. 2008, 7, 759–770. [Google Scholar] [CrossRef]
- Plagemann, P.G.W.; Wohlhueter, R.W.; Woffendin, C. Nucleoside and nucleobase transport in animal cells. Biochim. Biophy. Acta 1988, 947, 405–443. [Google Scholar] [CrossRef]
- Thorn, J.A.; Jarvis, S.M. Adenosine transporters. Gen. Pharmacol. 1996, 27, 613–620. [Google Scholar] [CrossRef]
- Brown, J.R.; Cornell, K.; Cook, P.W. Adenosine- and adenine-nucleotide-mediated inhibition of normal and transformed keratinocyte proliferation is dependent upon dipyridamole-sensitive adenosine transport. J. Invest. Dermatol. 2000, 115, 849–859. [Google Scholar] [CrossRef]
- Schrier, S.M.; van Tilburg, E.W.; van der Meulen, H.; Ijzerman, A.P.; Mulder, G.J.; Nagelkerke, J.F. Extracellular adenosine-induced apoptosis in mouse neuroblastoma cells-studies on involvement of adenosine receptors and adenosine uptake. Biochem. Pharmacol. 2001, 61, 417–425. [Google Scholar]
- Nucciarelli, F.; Mearini, E.; Minelli, A. Effects of adenosine on prostate adenocarcinoma PC-3 and bladder carcinoma J82 cells lines. Drug Dev. Res. 2003, 58, 390–395. [Google Scholar] [CrossRef]
- Hofer, M.; Hoferová, Z.; Pospíšil, M; Znojil, V.; Chramostová, K. Effects of adenosine on the growth of murine G:5:113 fibrosarcoma cells in vitro. FoliaBiologica (Praha) 2003, 49, 207–210. [Google Scholar]
- Gordon, E.L.; Pearson, J.D.; Dickinson, E.S.; Moreau, D.; Slakey, L.L. The hydrolysis of extracellular adenine nucleotides by arterial smooth muscle cells - Regulation of adenosine production at the cell-surface. J. Biol. Chem. 1989, 264, 18986–18992. [Google Scholar]
- Pospíšil, M.; Hofer, M.; Znojil, V.; Vácha, J.; Netíková, J.; Holá, J. Synergistic effect of granulocyte colony-stimulating factor and drugs elevating extracellular adenosine on neutrophil production in mice. Blood 1995, 86, 3692–3697. [Google Scholar]
- Pospíšil, M.; Hofer, M.; Netíková, J.; Viklická, Š.; Pipalová, I.; Bartoníčková, A. Effect of dipyridamole and adenosine monophosphate on cell proliferation in the hemopoietic tissue of normal and gamma-irradiated mice. Experientia 1992, 48, 253–257. [Google Scholar] [CrossRef]
- Hošek, B.; Boháček, J.; Šikulová, J.; Pospíšil, M.; Vacek, A. Protection of early cellular damage in 1 Gy-irradiated mice by the elevation of extracellular adenosine. Radiat. Environ. Biophys. 1992, 31, 289–297. [Google Scholar] [CrossRef]
- Boháček, J.; Hošek, B.; Pospíšil, M. Postirradiation administration of adenosine monophosphate with dipyridamole reduces early cellular damage in mice. Life Sci. 1993, 53, 1317–1324. [Google Scholar] [CrossRef]
- Hofer, M.; Mazur, L.; Pospíšil, M.; Weiterová, L.; Znojil, V. Radioprotective action of extracellular adenosine on bone marrow cells in mice exposed to gamma rays as assayed by the micronucleus test. Radiat. Res. 2000, 154, 217–221. [Google Scholar] [CrossRef]
- Pospíšil, M.; Hofer, M.; Netíková, J.; Pipalová, I.; Vacek, A.; Bartoníčková, A.; Volenec, K. Elevation of extracellular adenosine induces radioprotective effects in mice. Radiat. Res. 1993, 134, 323–330. [Google Scholar] [CrossRef]
- Pospíšil, M.; Hofer, M.; Vacek, A.; Netíková, J.; Pipalová, I.; Viklická, Š. Noradrenaline reduces cardiovascular effects of the combined dipyridamole and AMP administration but preserves radioprotective effects of these drugs on hematopoiesis in mice. Physiol. Res. 1993, 42, 333–340. [Google Scholar]
- Hofer, M.; Pospíšil, M.; Netíková, J.; Znojil, V.; Vácha, J. Enhancement of haemopoietic spleen colony formation by drugs elevating extracellular adenosine: Effects of repeated in vivo treatment. Physiol. Res. 1997, 46, 285–290. [Google Scholar]
- Pospíšil, M.; Hofer, M.; Znojil, V.; Vácha, J.; Netíková, J.; Holá, J. Radioprotection of mouse hemopoiesis by dipyridamole and adenosine monophosphate in fractionated treatment. Radiat. Res. 1995, 142, 16–22. [Google Scholar] [CrossRef]
- Hofer, M.; Pospíšil, M.; Netíková, J.; Znojil, V.; Vácha, J.; Holá, J. Radioprotective efficacy of dipyridamole and AMP combination in fractionated radiation regimen, and its dependence on the time of administration of the drugs prior to irradiation. Physiol. Res. 1995, 44, 93–98. [Google Scholar]
- Pospíšil, M.; Hofer, M.; Vacek, A.; Netíková, J.; Holá, J.; Znojil, V.; Weiterová, L. Drugs elevating extracellular adenosine enhance cell-cycling of hematopoietic progenitor cells as inferred from the cytotoxic effects of 5-fluorouracil. Exp. Hematol. 2001, 29, 557–562. [Google Scholar] [CrossRef]
- Hofer, M.; Weiterová, L.; Vacek, A.; Znojil, V.; Pospíšil, M.; Vácha, J. Elevation of of extracellular adenosine mobilizes haematopoietic progenitor cells into peripheral blood and enhances the mobilizing effects of granulocyte colony-stimulating factor. Eur. J. Haematol. 2003, 71, 204–210. [Google Scholar] [CrossRef]
- Pospíšil, M.; Hofer, M.; Znojil, V.; Netíková, J.; Vácha, J.; Holá, J.; Vacek, A. Granulocyte colony-stimulating factor and drugs elevating extracellular adenosine synergize to enhance haematopoietic reconstitution in irradiated mice. Eur. J. Haematol. 1998, 60, 172–180. [Google Scholar]
- Weiterová, L.; Hofer, M.; Pospíšil, M.; Znojil, V.; Vácha, J.; Vacek, A.; Pipalová, I. Influence of the joint treatment with granulocyte colony-stimulating factor and drugs elevating extracellular adenosine on erythropoietic recovery following 5-fluorouracil-induced hematotoxicity in mice. Eur. J. Haematol. 2000, 65, 310–316. [Google Scholar]
- Hofer, M.; Pospíšil, M.; Weiterová, L.; Znojil, V.; Vácha, J.; Holá, J.; Vacek, A.; Pipalová, I. Combination of drugs elevating extracellular adenosine with granulocyte colony-stimulating factor promotes granulopoietic recovery in mouse bone marrow after 5-fluorouracil treatment. Physiol. Res. 2001, 50, 521–524. [Google Scholar]
- Hofer, M.; Pospíšil, M.; Znojil, V.; Vacek, A.; Weiterová, L.; Holá, J.; Vácha, J. Drugs elevating extracellular adenosine promote regeneration of haematopoietic progenitor cells in severely myelosuppressed mice: their comparison and joint effects with granulocyte colony-stimulating factor. Eur. J. Haematol. 2002, 68, 4–11. [Google Scholar] [CrossRef]
- Hofer, M.; Pospíšil, M.; Netíková, J.; Znojil, V.; Vácha, J. Granulocyte colony-stimulating factor and drugs elevating extracellular adenosine act additively to enhance the hemopoietic spleen colony formation in irradiated mice. Physiol. Res. 1999, 48, 37–42. [Google Scholar]
- Jacobson, M.A. Adenosine receptor agonists. Expert Opin. Ther. Patents 2002, 12, 489–501. [Google Scholar] [CrossRef]
- Tuovinen, K.; Tarjanen, J. Clearance of cyclopentyladenosine and cyclohexyladenosine in rats following a single subcutaneous dose. Pharmacol. Res. 2004, 50, 329–334. [Google Scholar] [CrossRef]
- Martin, P.L.; Barrett, R.J.; Sykes, A.; Droppleman, D.A.; Wright, K.F.; Mossem, D. Pharmacology and toxicology of the A2A -adenosine receptor agonist 2-[(cyclohexylmethylene)hydrazino]adenosine (MRE-0470) in the rat. Drug Dev. Res. 1997, 42, 76–85. [Google Scholar] [CrossRef]
- Pospíšil, M.; Hofer, M.; Vacek, A.; Znojil, V.; Pipalová, I. Effects of stable adenosine receptor agonists on bone marrow hematopoietic cells as inferred from the cytotoxic action of 5-fluorouracil. Physiol. Res. 2004, 53, 549–556. [Google Scholar]
- Fredholm, B.B.; Arslan, G.; Halldner, L.; Kull, B.; Schulte, G.; Wassermann, G. Structure and function of adenosine receptors and their genes. Naunyn-Schmied. Arch. Pharmacol. 2000, 362, 364–374. [Google Scholar] [CrossRef]
- Parsons, M.; Young, L.; Lee, J.E.; Jacobson, K.A.; Liang, B.T. Distinct cardioprotective effects of adenosine mediated by differential coupling of receptor subtypes to phospholipases C and D. FASEB J. 2000, 14, 1423–1431. [Google Scholar] [CrossRef]
- Hofer, M.; Pospíšil, M.; Vacek, A.; Holá, J.; Znojil, V.; Weiterová, L.; Štreitová, D. Effects of adenosine A3 receptor agonist on bone marrow granulocytic system in 5-fluorouracil-treated mice. Eur. J. Pharmacol. 2006, 538, 163–167. [Google Scholar] [CrossRef]
- Pospíšil, M.; Hofer, M.; Vacek, A.; Holá, J.; Pipalová, I.; Znojil, V. N6-Cyclopentyladenosine inhibits proliferation of haematopoietic progenitor cells in vivo. Eur. J. Pharmacol. 2005, 507, 1–6. [Google Scholar] [CrossRef]
- Hofer, M.; Pospíšil, M.; Znojil, V.; Holá, J.; Vacek, A.; Štreitová, D. Adenosine A3 receptor agonist acts as a homeostatic regulator of bone marrow hematopoiesis. Biomed. Pharmacother. 2007, 61, 356–359. [Google Scholar] [CrossRef]
- Hofer, M.; Pospíšil, M.; Znojil, V.; Holá, J.; Štreitová, D.; Vacek, A. Homeostatic action of adenosine A3 and A1 receptor agonists on proliferation of hematopoietic precursor cells. Exp. Biol. Med. 2008, 233, 897–900. [Google Scholar] [CrossRef]
- Merimsky, O.; Bar-Yehuda, S.; Madi, L.; Fishman, P. Modulation of the A3 adenosine receptor by low agonist concentration induces antitumor and myelostimulatory effects. Drug Dev. Res. 2003, 58, 386–389. [Google Scholar] [CrossRef]
- Fortin, A.; Harbour, D.; Fernandes, M.; Borgeat, P.; Bourgoin, S. Differential expression of adenosine receptors in human neutrophils: up-regulation by specific Th1 cytokines and lipopolysaccharide. J. Leukocyte Biol. 2006, 79, 574–585. [Google Scholar]
- Thiele, A.; Kronstein, R.; Wetzel, A.; Gerth, A.; Nieber, K.; Hauschildt, S. Regulation of adenosine receptor subtypes during cultivation of human monocytes: Role of receptors in preventing lipopolysaccharide-triggered respiratory burst. Infec. Immunity 2004, 72, 1349–1357. [Google Scholar] [CrossRef]
- Himer, L.; Csoka, B.; Selmeczy, Z.; Koscso, B.; Pocza, T.; Pacher, P.; Nemeth, Z.H.; Deitch, E.A.; Vizi, E.S.; Cronstein, B.N.; Hasko, G. Adenosine A2a receptor activation protects CD4+ T lymphocytes against activation-induced cell death. FASEB J. 2010, 24, 2631–2640. [Google Scholar]
- Mirabet, M.; Herrera, C.; Cordero, O.J.; Mallol, J.; Lluis, C.; Franco, R. Expression of A2B adenosine receptors in human lymphocytes: their role in T cell activation. J. Cell Sci. 1999, 112, 491–502. [Google Scholar]
- Gessi, S.; Varani, K.; Merighi, S.; Cattabriga, E.; Avitabile, A.; Gavioli, R.; Fortini, C.; Leung, E.; Mac Lennan, S.; Borea, P.A. Expression of adenosine A3 receptors in human lymphocytes: up-regulation in T-cell activation. Mol. Pharmacol. 2004, 65, 711–719. [Google Scholar] [CrossRef]
- Štreitová, D.; Šefc, L.; Savvulidi, F.; Pospíšil, M.; Holá, J.; Hofer, M. Adenosine A1, A2a, A2b, and A3 receptors in hematopoiesis. 1. Expression of receptor mRNA in four mouse hematopoietic precursor cells. Physiol. Res. 2010, 59, 133–137. [Google Scholar]
- Hofer, M.; Vacek, A.; Lojek, A.; Holá, J.; Štreitová, D. Ultrafiltered pig leukocyte extract (IMUNOR®) decreases nitric oxide formation and hematopoiesis-stimulating cytokine production in lipopolysaccharide-stimulated RAW 264.7 macrophages. Int. Immunopharmacol. 2007, 7, 1369–1374. [Google Scholar] [CrossRef]
- Kamio, N.; Akifusa, S.; Yamaguchi, N.; Yamashita, Y. Induction of granulocyte colony-stimulating factor by globular adiponectin via the MEK-ERK pathway. Mol. Cell. Endocrinol. 2008, 292, 20–25. [Google Scholar] [CrossRef]
- Murphree, L.J.; Sullivan, G.W.; Marshall, M.A.; Linden, J. Lipopolysaccharide rapidly modifies adenosine receptor transcripts in murine and human macrophages: role of NF-κB in A2A adenosine receptor induction. Biochem. J. 2005, 391, 575–580. [Google Scholar] [CrossRef]
- Štreitová, D.; Hofer, M.; Holá, J.; Vacek, A.; Pospíšil, M. Adenosine A1, A2a, A2b, and A3 receptors in hematopoiesis. 2. Expression of receptor mRNA in resting and lipopolysaccharide-activated mouse RAW 264.7 macrophages. Physiol. Res. 2010, 59, 139–144. [Google Scholar]
- Katebi, M.; Fernandez, P.; Chan, E.S.; Cronstein, B.N. Adenosine A2a receptor blockade or deletion diminishes fibrocyte accumulation in the skin in a murine model of scleroderma, bleomycin-induced fibrosis. Inflammation 2008, 31, 299–303. [Google Scholar] [CrossRef]
- Katebi, M.; Soleimani, M.; Cronstein, B.N. Adenosine A2a receptors play an active role in mouse bone marrow-derived mesenchymal stem cell development. J. Leukocyte Biol. 2009, 85, 438–444. [Google Scholar]
- Montesinos, M.C.; Shaw, J.P.; Yee, H.; Shamamian, P.; Cronstein, B.N. Adenosine A2a receptor activation promotes wound neovascularization by stimulating angiogenesis and vasculogenesis. Am. J. Pathol. 2004, 164, 1887–1892. [Google Scholar] [CrossRef]
- Weiterová, L.; Hofer, M.; Pospíšil, M.; Znojil, V.; Štreitová, D. Drugs elevating extracellular adenosine administered in vivo induce serum colony forming activity and interleukin-6 in mice. Physiol. Res. 2007, 56, 463–473. [Google Scholar]
- Bar-Yehuda, S.; Madi, L.; Barak, D.; Mittelman, M.; Ardon, E.; Ochaion, A.; Cohn, S.; Fishman, P. Agonists to the A3 adenosine receptor induce G-CSF production via NF-κ B activation: A new class of myeloprotective agents. Exp. Hematol. 2002, 30, 1390–1398. [Google Scholar] [CrossRef]
- Hofer, M.; Vacek, A.; Pospíšil, M.; Weiterová, L.; Holá, J.; Štreitová, D.; Znojil, V. Adenosine potentiates stimulatory effects on granulocyte-macrophage hematopoietic progenitor cells in vitro of IL-3 and SCF, but not those of G-CSF, GM-CSF and IL-11. Physiol. Res. 2006, 55, 591–596. [Google Scholar]
- Hofer, M.; Pospíšil, M.; Šefc, L.; Dušek, L.; Vacek, A.; Holá, J.; Hoferová, Z.; Štreitová, D. Activation of adenosine A3 receptors supports hematopoiesis-stimulating effects of granulocyte colony-stimulating factor in sublethally irradiated mice. Int. J. Radiat. Biol. 2010, 86, 649–656. [Google Scholar] [CrossRef]
- Van Troostenburg, A.-R.; Clark, E.V.; Carey, W.O.H., Warrington; Kerns, W.D.; Cohn, I.; Silverman, M.H.; Bar-Yehuda, S.; Fong, K.-L.L.; Fishman, P. Tolerability, pharmacokinetics and concentration-dependent hemodynamic effects of oral CF 101, an A3 adenosine receptor agonist, in healthy young men. Int. J. Clin. Pharma. Therapeutics 2004, 42, 534–542. [Google Scholar]
- Fishman, P.; Bar-Yehuda, S. Pharmacology and therapeutic applications of A3 receptor subtype. Curr. Top. Med. Chem. 2003, 3, 463–469. [Google Scholar] [CrossRef]
- Silverman, M.H.; Strand, V.; Markovits, D.; Nahir, M.; Reitblat, T.; Molad, Y.; Rosner, I.; Rozenbaum, M.; Mader, R.; Adawi, M.; et al. Clinical evidence for utilization of the A3 adenosine receptor as a target to treat rheumatoid arthritis: Data from a Phase II clinical trial. J. Rheumatol. 2008, 35, 41–48. [Google Scholar]
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Hofer, M.; Pospisil, M.; Weiterova, L.; Hoferova, Z. The Role of Adenosine Receptor Agonists in Regulation of Hematopoiesis. Molecules 2011, 16, 675-685. https://doi.org/10.3390/molecules16010675
Hofer M, Pospisil M, Weiterova L, Hoferova Z. The Role of Adenosine Receptor Agonists in Regulation of Hematopoiesis. Molecules. 2011; 16(1):675-685. https://doi.org/10.3390/molecules16010675
Chicago/Turabian StyleHofer, Michal, Milan Pospisil, Lenka Weiterova, and Zuzana Hoferova. 2011. "The Role of Adenosine Receptor Agonists in Regulation of Hematopoiesis" Molecules 16, no. 1: 675-685. https://doi.org/10.3390/molecules16010675
APA StyleHofer, M., Pospisil, M., Weiterova, L., & Hoferova, Z. (2011). The Role of Adenosine Receptor Agonists in Regulation of Hematopoiesis. Molecules, 16(1), 675-685. https://doi.org/10.3390/molecules16010675