Recent Applications of the (TMS)3SiH Radical-Based Reagent
Abstract
:1. Introduction
2. (TMS)3SiH as Radical-Based Reducing Agent
3. (TMS)3SiH as Mediator of Consecutive Radical Reactions
4. Applications of (TMS)3SiH in Photopolymerization Reactions
4.1. Formation and Reactivity of Silyl Radicals in Photoinitiated Systems
kH(3BP), 107 M−1 s−1 | kH(t-BuO•), 107 M−1 s−1 | |
---|---|---|
Et3Si—H | 0.83 a; 0.96 b (Φ = 0.81) | 1.0 a; 0.57 b |
(TMS)3Si—H | 10.2 a (Φ = 0.95) | 8.5 a; 11.0 c |
kadd (M−1 s−1) | Styrene | Acrylonitrile | Methyl acrylate | Vinyl acetate | Vinyl ether | Ref. |
---|---|---|---|---|---|---|
(TMS)3Si• | 5.1 × 107 | 5.1 × 107 | 2.2 × 107 | 1.2 × 106 | 2.1 × 105 | [22] |
5.9 × 107 | 6.3 × 107 | 9.7 × 107 a | [86] | |||
Et3Si• | 2.1 × 108 | 1.1 × 109 | 2.4 × 108 | 3.5 × 106 | 9 × 104 | [22] |
2.2 × 108 | 1.1 × 109 | [87] |
4.2. (TMS)3Si• as a Initiator for Free Radical Polymerization (FRP)
4.3. (TMS)3SiH: A New Additive to Overcome the Oxygen Inhibition in FRP Process
4.4. Silyl Radicals in Free Radical Promoted Cationic Polymerization (FRPCP)
4.5. (TMS)3SiH in Photoredox Catalysis: Polymerization Under Very Soft Irradiation Conditions
4.6. (TMS)3SiH As a New Additive for Thermal FRP Processes
4.7. (TMS)3SiH Initiating Systems for Thermal Ring Opening Polymerization Processes
5. (TMS)3SiH As a Model for H-Si Surface
6. Conclusions
- Sample Availability: Not available.
References and Notes
- Chatgilialoglu, C. Organosilanes as radical-based reducing agents in synthesis. Acc. Chem. Res. 1992, 25, 188–194. [Google Scholar] [CrossRef]
- Chatgilialoglu, C.; Ferreri, C.; Gimisis, T. Tris(trimethylsilyl)silane in organic synthesis. In The Chemistry of Organic Silicon Compounds; Rappoport, Z., Apeloig, Y., Eds.; Wiley: Chichester, UK, 1998; Volume 2, pp. 1539–1579. [Google Scholar]
- Chatgilialoglu, C. Organosilanes in Radical Chemistry; Wiley: Chichester, UK, 2004. [Google Scholar]
- Chatgilialoglu, C. (Me3Si)3SiH: Twenty years after its discovery as a radical-based reducing agent. Chem. Eur. J. 2008, 14, 2310–2320. [Google Scholar] [CrossRef]
- Chatgilialoglu, C.; Timokhin, V.I. Silyl radicals in chemical synthesis. Adv. Organomet. Chem. 2008, 57, 117–181. [Google Scholar] [CrossRef]
- Shan, M.; Xing, Y.; O’Doherty, G.A. De novo asymmetric synthesis of an α-6-deoxyaltropyranoside as well as its 2-/3-deoxy and 2,3-dideoxy congeners. J. Org. Chem. 2009, 74, 5961–5966. [Google Scholar] [CrossRef]
- Esteve, J.; Lorente, A.; Romea, P.; Urpí, F.; Ríos-Luci, C.; Padrón, J.M. Synthesis and biological evaluation of 1-deoxy-5-hydroxysphingosine derivatives. Eur. J. Org. Chem. 2011, 960–967. [Google Scholar]
- Krow, G.R.; Edupuganti, R.; Gandla, D.; Yu, F.; Sender, M.; Sonnet, P.E.; Zdilla, M.J.; DeBrosse, C.; Cannon, K.C.; Ross, C.W., III; et al. Synthesis of conformationally constrained 5-fluoro- and 5-hydroxymethanopyrrolidines. Ring-puckered mimics of gauche- and anti-3-fluoro- and 3-hydroxypyrrolidines. J. Org. Chem. 2011, 76, 3626–3634. [Google Scholar]
- Chatgilialoglu, C.; Ferreri, C. Progress of the Barton-McCombie methodology: From tin hydrides to silanes. Res. Chem. Intermed. 1993, 19, 755–775. [Google Scholar] [CrossRef]
- Sethofer, S.G.; Staben, S.T.; Hung, O.Y.; Toste, F.D. Au(I)-Catalyzed ring expanding cycloisomerizations: Total synthesis of ventricosene. Org. Lett. 2008, 10, 4315–4318. [Google Scholar] [CrossRef]
- Kraft, P.; Weymuth, C.; Nussbaumer, C. Total synthesis and olfactory evaluation of (1R*,3S*,6S*,7S*,8S*)-3-hydroxy-6,8-dimethyltricyclo[5.3.1.03,8]undecan-2-one: A new synthetic route to the patchoulol skeleton. Eur. J. Org. Chem. 2006, 1403–1412. [Google Scholar]
- Tiwari, K.N.; Shortnacy-Fowler, A.T.; Parker, W.B.; Waud, W.R.; Secrist, J.A., III. Synthesis and anticancer evaluation of 4′-C-methyl-2′-fluoro arabino nucleosides. Nucleos. Nucleot. Nucleic Acids 2009, 28, 657–677. [Google Scholar]
- Alcaide, B.; Rodriguez-Vicente, A.; Sierra, M.A. A new radical route to C4-unsubstituted β-lactams. Tetrahedron Lett. 1998, 39, 163–166. [Google Scholar]
- Yamaguchi, K.; Kazuta, Y.; Abe, H.; Matsuda, A.; Shuto, S. Construction of a cis-cyclopropane via reductive radical decarboxylation. Enantioselective synthesis of cis- and trans-1-arylpiperazyl-2-phenylcyclopropanes designed as antidopaminergic agents. J. Org. Chem. 2003, 68, 9255–9262. [Google Scholar] [CrossRef]
- Movassaghi, M.; Schmidt, M.A. Concise total synthesis of (−)-calycanthine, (+)-chimonanthine, and (+)-folicanthine. Angew. Chem. Int. Ed. 2007, 46, 3725–3728. [Google Scholar] [CrossRef]
- Lucarini, M.; Marchesi, E.; Pedulli, G.F.; Chatgilialoglu, C. Homolytic reactivity of Group 14 organometallic hydrides towards nitroxides. J. Org. Chem. 1998, 63, 1687–1693. [Google Scholar] [CrossRef]
- Romeo, R.; Wozniak, L.A.; Chatgilialoglu, C. Radical-based reduction of phosphine sulfides and phosphine selenides by (Me3Si)3SiH. Tetrahedron Lett. 2000, 41, 9899–9902. [Google Scholar]
- Kondoh, A.; Yorimitsu, H.; Oshima, K. Synthesis of 2-indolylphosphines by palladium-catalyzed annulation of 1-alkynylphosphine sulfides with 2-iodoanilines. Org. Lett. 2010, 12, 1476–1479. [Google Scholar] [CrossRef]
- Odedra, A.; Geyer, K.; Gustafsson, T.; Gilmour, R.; Seeberger, P.H. Safe, facile radical-based reduction and hydrosilylation reactions in a microreactor using tris(trimethylsilyl)silane. Chem. Commun. 2008, 3025–3027. [Google Scholar]
- Chong, Y.K.; Moad, G.; Rizzardo, E.; Thang, S.H. Thiocarbonylthio end group removal from RAFT-synthesized polymers by radical-induced reduction. Macromolecules 2007, 40, 4446–4455. [Google Scholar] [CrossRef]
- Kopping, B.; Chatgilialoglu, C.; Zehnder, M.; Giese, B. (Me3Si)3SiH: An efficient hydrosilylating agent of alkenes and alkynes. J. Org. Chem. 1992, 57, 3994–4000. [Google Scholar] [CrossRef]
- Lalevée, J.; Allonas, X.; Fouassier, J.P. Tris(trimethylsilyl)silane (TTMSS)-derived radical reactivity toward alkenes: A combined quantum mechanical and laser flash photolysis study. J. Org. Chem. 2007, 72, 6434–6439. [Google Scholar] [CrossRef]
- Wnuk, S.F.; Garcia, P.I.; Wang, Z. Radical-mediated silyl- and germyldesulfonylation of vinyl and (α-fluoro)vinyl sulfones: Application of tris(trimethylsilyl)silanes and tris(trimethylsilyl)germanes in Pd-catalyzed couplings. Org. Lett. 2004, 6, 2047–2049. [Google Scholar] [CrossRef]
- Wang, Z.; Pitteloud, J.-P.; Montes, L.; Rapp, M.; Derane, D.; Wnuk, S.F. Vinyl tris(trimethylsilyl)silanes: Substrates for Hiyama coupling. Tetrahedron 2008, 64, 5322–5327. [Google Scholar] [CrossRef]
- Chatgilialoglu, C.; Ballestri, M.; Vecchi, D.; Curran, D.P. Synthesis of 2-functionalized allyl tris(trimethylsilyl)silanes. Tetrahedron Lett. 1996, 37, 6383–6386. [Google Scholar] [CrossRef]
- Rouquet, G.; Robert, F.; Méreau, F.; Castet, F.; Landais, Y. Allylsilanes in “tin-free” oximation, alkenylation, and allylation of alkyl halides. Chem. Eur. J. 2011, 17, 13904–13911. [Google Scholar] [CrossRef]
- Zaborovskiy, A.B.; Lutsyk, D.S.; Prystansky, R.E.; Kopylets, V.I.; Timokhin, V.I.; Chatgilialoglu, C. A mechanistic investigation of (Me3Si)3SiH oxidation. J. Organomet. Chem. 2004, 689, 2912–2919. [Google Scholar]
- Chatgilialoglu, C. The tris(trimethylsilyl)silane/thiol reducing system: A tool for measuring rate constants for reactions of carbon-centered radicals with thiols. Helv. Chim. Acta 2006, 89, 2387–2398. [Google Scholar]
- Roberts, B.P. Polarity-reversal catalysis of hydrogen-atom abstraction reactions: Concepts and applications in organic chemistry. Chem. Soc. Rev. 1999, 28, 25–35. [Google Scholar] [CrossRef]
- Haque, M.B.; Roberts, B.P.; Tocher, D.A. Enantioselective radical-chain hydrosilylation of alkenes using homochiral thiols as polarity-reversal catalysts. J. Chem. Soc. Perkin Trans. 1 1998, 2881–2889. [Google Scholar]
- Postigo, A.; Kopsov, S.; Ferreri, C.; Chatgilialoglu, C. Radical reactions in aqueous medium using (Me3Si)3SiH. Org. Lett. 2007, 9, 5159–5162. [Google Scholar] [CrossRef]
- Postigo, A.; Kopsov, S.; Zlotsky, S.S.; Ferreri, C.; Chatgilialoglu, C. Hydrosilylation Reactions of C-C Multiple Bonds in Water. Comparative Study of the Radical Initiation Mechanisms. Organometallics 2009, 28, 3282–3287. [Google Scholar]
- Nicolaou, K.C.; Sasmal, P.K.; Roecker, A.J.; Sun, X.-W.; Mandal, S.; Converso, A. Studies toward the Synthesis of Azadirachtin, Part 1: Total Synthesis of a Fully Functionalized ABC Ring Framework and Coupling with a Norbornene Domain. Angew. Chem. Int. Ed. 2005, 44, 3443–3447. [Google Scholar]
- Nicolaou, K.C.; Sasmal, P.K.; Koftis, T.V.; Converso, A.; Loizidou, E.; Kaiser, F.; Roecker, A.J.; Dellios, C.C.; Sun, X.-W.; Petrovic, G. Studies toward the Synthesis of Azadirachtin, Part 2: Construction of Fully Functionalized ABCD Ring Frameworks and Unusual Intramolecular Reactions Induced by Close-Proximity Effects. Angew. Chem. Int. Ed. 2005, 44, 3447–3452. [Google Scholar]
- Hasegawa, E.; Ogawa, Y.; Kakinuma, K.; Tsuchida, H.; Tosaka, E.; Takizawa, S.; Muraoka, H.; Saikawa, T. Tris(trimethylsilyl)silane promoted radical reaction and electron-transfer reaction in benzotrifluoride. Tetrahedron 2008, 64, 7724–7728. [Google Scholar] [CrossRef]
- Maulide, N.; Markó, I.E. Stereoselective synthesis of bicyclic lactones by annelation with functionalised orthoesters. Chem. Commun. 2006, 1200–1202. [Google Scholar] [CrossRef]
- Sugimoto, H.; Kobayashi, M.; Nakamura, S.; Toru, T. Enantioselective radical cyclization of α,β-unsaturated sulfonyl compounds. Tetrahedron Lett. 2004, 45, 4213–4216. [Google Scholar] [CrossRef]
- Hehn, J.P.; Kemmler, M.; Bach, T. Cyclobutylcarbinyl radical fragmentation reactions of tetronate [2 + 2]-photocycloaddition products. Synlett 2009, 1281–1284. [Google Scholar]
- Gandon, L.A.; Russell, A.G.; Guveli, T.; Brodwolf, A.E.; Kariuki, B.M.; Spencer, N.; Snaith, J.S. Synthesis of 2,4-disubstituted piperidines via radical cyclization: Unexpected enhancement in diastereoselectivity with tris(trimethylsilyl)silane. J. Org. Chem. 2006, 71, 5198–5207. [Google Scholar] [CrossRef]
- Tietze, L.F.; Behrendt, F.; Major, F.; Krewer, B.; von Hof, J.M. Synthesis of Fluorescence Labeled Glycosidic Prodrugs Based on the Cytotoxic Antibiotic Duocarmycin. Eur. J. Org. Chem. 2010, 6909–6921. [Google Scholar]
- Pudlo, M.; Gérard, S.; Mirand, C.; Sapi, J. A tandem radical cyclization approach to 3-(2-oxopyrrolidin-3-yl)indolin-2-ones, potential intermediates toward complex indole-heterocycles. Tetrahedron Lett. 2008, 49, 1066–1070. [Google Scholar] [CrossRef]
- Curran, D.P.; Keller, A.I. Radical additions of aryl iodides to arenes are facilitated by oxidative rearomatization with dioxygen. J. Am. Chem. Soc. 2006, 128, 13706–13707. [Google Scholar] [CrossRef]
- Overman, L.E.; Sato, T. Construction of epidithiodioxopiperazines by directed oxidation of hydroxyproline-derived dioxopiperazines. Org. Lett. 2007, 9, 5267–5270. [Google Scholar] [CrossRef]
- Zuleta-Prada, H.; Miranda, L.D. Synthesis of spiroindolenine derivatives by a tandem radical-oxidation process. Tetrahedron Lett. 2009, 50, 5336–5339. [Google Scholar] [CrossRef]
- Crich, D.; Rahaman, M.Y. Thiomaleic anhydride: A convenient building block for the synthesis of α-substituted γ- and δ-lactones through free-radical addition, nucleophilic ring opening, and subsequent thiocarboxylate manipulation. J. Org. Chem. 2009, 74, 6792–6796. [Google Scholar] [CrossRef]
- Sibi, M.P.; Yang, Y.-H.; Lee, S. Tin-free enantioselective radical reactions using silanes. Org. Lett. 2008, 10, 5349–5352. [Google Scholar] [CrossRef]
- Lee, S.; Kim, S. Enantioselective radical addition reactions to imines using binaphthol-derived chiral N-triflyl phosphoramides. Tetrahedron Lett. 2009, 50, 3345–3348. [Google Scholar] [CrossRef]
- Barata-Vallejo, S.; Postigo, A. (Me3Si)3SiH-mediated intermolecular radical perfluoroalkylation reactions of olefins in water. J. Org. Chem. 2010, 75, 6141–6148. [Google Scholar] [CrossRef]
- Pignard, S.; Lopin, C.; Gouhier, G.; Piettre, S.R. Phosphonodifluoromethyl and phosphonothio-difluoromethyl radicals. Generation and addition onto alkenes and alkynes. J. Org. Chem. 2006, 71, 31–37. [Google Scholar] [CrossRef]
- Navacchia, M.L.; Chatgilialoglu, C.; Montevecchi, P.M. C5′-Adenosinyl radical cyclization. A stereochemical investigation. J. Org. Chem. 2006, 71, 4445–4452. [Google Scholar] [CrossRef]
- Yoshimura, Y.; Yamazaki, Y.; Wachi, K.; Satoh, S.; Takahata, H. Synthesis of 6,5′-C-cyclouridine by a novel tandem radical 1,6-hydrogen transfer and cyclization reaction. Synlett 2007, 111–114. [Google Scholar]
- Chatgilialoglu, C.; Ferreri, C.; Terzidis, M.A. Purine 5′,8-cyclonucleoside lesions: Chemistry and biology. Chem. Soc. Rev. 2011, 40, 1368–1382. [Google Scholar] [CrossRef]
- McGrath, N.A.; Binner, J.R.; Markopoulos, G.; Brichacek, M.; Njardarson, J.T. An efficient oxidative dearomatization-radical cyclization approach to symmetrically substituted bicyclic guttiferone natural products. Chem. Commun. 2011, 47, 209–211. [Google Scholar]
- Grant, S.W.; Zhu, K.; Zhang, Y.; Castle, S.L. Stereoselective cascade reactions that incorporate a 7-exo acyl radical cyclization. Org. Lett. 2006, 8, 1867–1870. [Google Scholar]
- Dandapani, S.; Duduta, M.; Panek, J.S.; Porco, J.A., Jr. Skeletal diversity through radical cyclization of tetrahydropyridine scaffolds. Org. Lett. 2007, 9, 3849–3852. [Google Scholar] [CrossRef]
- Reynolds, A.J.; Scott, A.J.; Turner, C.I.; Sherburn, M.S. The Intramolecular Carboxyarylation Approach to Podophyllotoxin. J. Am. Chem. Soc. 2003, 125, 12108–12109. [Google Scholar] [CrossRef]
- Fischer, J.; Reynolds, A.J.; Sharp, L.A.; Sherburn, M.S. Radical carboxyarylation approach to lignans. Total synthesis of (−)-arctigenin, (−)-matairesinol, and related natural products. Org. Lett. 2004, 6, 1345–1348. [Google Scholar] [CrossRef]
- Jones, N.R.; Pattenden, G. Alkene-allenecyclopropane radical cyclisations promoted by tris-(trimethylsilyl)silane. Tetrahedron Lett. 2009, 50, 3527–3529. [Google Scholar]
- Fouassier, J.P. Photoinitiation, Photopolymerization and Photocuring: Fundamental and Applications; Hanser Publishers: New York, NY, USA, 1995. [Google Scholar]
- Belfield, K.D.; Crivello, J.V. Photoinitiated Polymerization; ACS Symposium series 847, American Chemical Society: Washington, DC, USA, 2003. [Google Scholar]
- Fouassier, J.P.; Lalevée, J. Photoinitiators for Polymer Synthesis; Wiley-VCH: Weinheim, Germany, 2012. [Google Scholar]
- Lalevée, J.; El-Roz, M.; Allonas, X.; Fouassier, J.P. Free-radical promoted cationic photopolymerization under visible light in aerated media: New and highly efficient silane-containing initiating systems. J. Polym. Sci. Part A Polym. Chem. 2008, 46, 2008–2014. [Google Scholar] [CrossRef]
- Lalevée, J.; Dirani, A.; El-Roz, M.; Allonas, X.; Fouassier, J.P. Silanes as new highly efficient co-initiators for radical polymerization in aerated media. Macromolecules 2008, 41, 2003–2010. [Google Scholar] [CrossRef]
- Ledwith, A. Mechanism of the initiation of cationic polymerization using the diphenyliodonium salt-benzoin. Polymer 1978, 19, 1217–1222. [Google Scholar] [CrossRef]
- Yagci, Y.; Kminek, I.; Schnabel, W. Long wavelength photoinitiated cationic polymerization using diphenyliodonium salt and catena-poly (phenyl-4-phenylphenylsilicon). Polymer 1993, 34, 426–428. [Google Scholar] [CrossRef]
- Crivello, J.V.; Sangermano, M. Visible and long-wavelength photoinitiated cationic polymerization. J. Polym. Sci. Part A Polym. Chem. 2001, 39, 343–356. [Google Scholar] [CrossRef]
- Dursun, C.; Degirmenci, M.; Yagci, Y.; Jockusch, S.; Turro, N.J. Free radical promoted cationic polymerization by using bisacylphosphine oxide photoinitiators: Substituent effect on the reactivity of phosphonyl radicals. Polymer 2003, 44, 7389–7396. [Google Scholar] [CrossRef]
- El-Roz, M.; Lalevée, J.; Morlet-Savary, F.; Allonas, X.; Fouassier, J.P. Long-wavelength induced radical and cationic photopolymerization: New (thio)pyrylium salts based photoinitiating system. J. Polym. Sci. Part A Polym. Chem. 2008, 46, 7369–7375. [Google Scholar] [CrossRef]
- El-Roz, M.; Lalevée, J.; Allonas, X.; Fouassier, J.P. Mechanistic investigation of the silane, germane, and stannane behavior when incorporated in type I and type II photoinitiators of polymerization in aerated media. Macromolecules 2009, 42, 8725–8732. [Google Scholar] [CrossRef]
- Tehfe, M.-A.; Lalevée, J.; Gigmes, D.; Fouassier, J.P. Green chemistry: Sunlight-induced cationic polymerization of renewable epoxy monomers under air. Macromolecules 2010, 43, 1364–1370. [Google Scholar]
- Tehfe, M.-A.; Lalevée, J.; Allonas, X.; Fouassier, J.P. Long wavelength cationic photo-polymerization in aerated media: A remarkable titanocene/tris(trimethylsilyl)silane/onium salt photoinitiating system. Macromolecules 2009, 42, 8669–8674. [Google Scholar] [CrossRef]
- Tehfe, M.-A.; Lalevée, J.; Gigmes, D.; Fouassier, J.P. Combination of transition metal carbonyls and silanes: New photoinitiating systems. J. Polym. Sci. A Polym. Chem. 2010, 48, 1830–1837. [Google Scholar] [CrossRef]
- Tehfe, M.-A.; Lalevée, J.; Morlet-Savary, F.; Blanchard, N.; Fries, C.; Graff, B.; Allonas, X.; Louërat, F.; Fouassier, J.P. Near UV-visible light induced cationic photopolymerization reactions: A three component photoinitiating system based on acridinedione/silane/iodonium salt. Eur. Polym. J. 2010, 16, 12920–12927. [Google Scholar]
- Lalevée, J.; Tehfe, M.-A.; Gigmes, D.; Fouassier, J.P. On the favorable interaction of metal centered radicals with hydroperoxides for an enhancement of the photopolymerization efficiency under air. Macromolecules 2010, 43, 6608–6615. [Google Scholar] [CrossRef]
- Lalevée, J.; Fouassier, J.P. Recent advances in sunlight induced polymerization: Role of new photoinitiating systems based on the silyl radical chemistry. Polym. Chem. 2011, 2, 1107–1113. [Google Scholar]
- Lalevée, J.; Blanchard, N.; Tehfe, M.-A.; Fouassier, J.P. Decatungstate (W10O324-)/silane: A new and promising radical source under soft light ittadiation. Macromol. Rapid Commun. 2011, 32, 838–843. [Google Scholar] [CrossRef]
- Lalevée, J.; Tehfe, M.-A.; Morlet-Savary, F.; Graff, B.; Fouassier, J.P. Radical photopolymerization reactions under air upon lamp and diode laser exposure: The input of the organosilane radical chemistry. Prog. Org. Coat. 2011, 70, 83–90. [Google Scholar]
- Lalevée, J.; Tehfe, M.-A.; Morlet-Savary, F.; Graff, B.; Fouassier, J.P. Oxygen mediated and wavelength tunable cationic photopolymerization reactions under air and low intensity: A new concept. Prog. Org. Coat. 2011, 70, 23–31. [Google Scholar]
- Chatgilialoglu, C.; Timokhin, V.I.; Zaborovskiy, A.B.; Lutsyk, D.S.; Prystansky, R.E. Rate Constants for the Reaction of Cumylperoxyl Radicals with Bu3SnH and (TMS)3SiH. Chem. Commun. 1999, 405–406. [Google Scholar]
- Chatgilialoglu, C.; Timokhin, V.I.; Zaborovskiy, A.B.; Lutsyk, D.S.; Prystansky, R.E. Rate Constants for the Reaction of Cumylperoxyl Radicals with Group 14 Hydrides. J. Chem. Soc. Perkin Trans. 2 2000, 527–582. [Google Scholar]
- Chatgilialoglu, C.; Guerrini, A.; Lucarini, M.; Pedulli, G.F.; Carrozza, P.; Da Roit, G.; Borzatta, V.; Lucchini, V. Autoxidation of Poly(hydrosilane)s. Organometallics 1998, 17, 2169–2176. [Google Scholar] [CrossRef]
- Chatgilialoglu, C. Structural and chemical properties of silyl radicals. Chem. Rev. 1995, 95, 1229–1251. [Google Scholar] [CrossRef]
- Chatgilialoglu, C.; Scaiano, J.C.; Ingold, K.U. Absolute rate constants for the reactions of tert-butoxyl radicals and some ketone triplets with silanes. Organometallics 1982, 1, 466–469. [Google Scholar] [CrossRef]
- Chatgilialoglu, C.; Rossini, S. The substituent effect on the reactivity of silanes towards tert-butoxyl radicals. Bull. Chim. Soc. Fr. 1988, 298–300. [Google Scholar]
- Chatgilialoglu, C.; Newcomb, M. Hydrogen donor abilities of the group 14 hydrides. Adv. Organomet. Chem. 1999, 44, 67–112. [Google Scholar] [CrossRef]
- Ballestri, M.; Chatgilialoglu, C.; Clark, K.B.; Griller, D.; Giese, B.; Kopping, B. Tris(trimethylsilyl)-silane as a radical-based reducing agent in synthesis. J. Org. Chem. 1991, 56, 678–683. [Google Scholar] [CrossRef]
- Chatgilialoglu, C.; Ingold, K.U.; Scaiano, J.C. Absolute rate constants for the addition of triethylsilyl radicals to various unsaturated compounds. J. Am. Chem. Soc. 1983, 105, 3292–3296. [Google Scholar]
- Lalevée, J.; Allonas, X.; Fouassier, J.P. Search for high reactivity and low selectivity of radicals toward double bonds: The case of a tetrazole- derived thiyl radical. J. Org. Chem. 2006, 71, 9723–9727. [Google Scholar]
- Lalevée, J.; Graff, B.; Allonas, X.; Fouassier, J.P. Aminoalkyl radicals: Direct observation and reactivity toward oxygen, 2,2,6,6-tetramethylpiperidine N-oxyl, and methyl acrylate. J. Phys. Chem. A 2007, 111, 6991–6998. [Google Scholar] [CrossRef]
- Tehfe, M.-A.; Lalevée, J.; Morlet-Savary, F.; Graff, B.; Fouassier, J.P. A breakthrough toward long wavelength cationic photopolymerization: Initiating systems based on violanthrone derivatives and silyl radicals, Macromolecules 2011, 44, 8374–8379. [Google Scholar] [CrossRef]
- Lalevée, J.; Blanchard, N.; Graff, B.; Allonas, X.; Fouassier, J.P. Tris(trimethylsilyl)silyl versus tris(trimethylsilyl)germyl: Radical reactivity and oxidation ability. J. Organomet. Chem. 2008, 693, 3643–3649. [Google Scholar]
- Nicewicz, D.A.; MacMillan, D.W.C. Merging photoredox catalysis with organocatalysis: The direct asymmetric alkylation of aldehydes. Science 2008, 322, 77–80. [Google Scholar] [CrossRef]
- Ischay, M.A.; Lu, Z.; Yoon, T.P. [2+2] Cycloadditions by oxidative visible light photocatalysis. J. Am. Chem. Soc. 2010, 132, 8572–8574. [Google Scholar] [CrossRef]
- Furst, L.; Matsuura, B.S.; Narayanam, J.M.R.; Tucker, J.W.; Stephenson, C.R.J. Visible light-mediated intermolecular C−H functionalization of electron-rich heterocycles with malonates. Org. Lett. 2010, 12, 3104–3107. [Google Scholar] [CrossRef]
- Lalevée, J.; Blanchard, N.; Tehfe, M.-A.; Morlet-Savary, F.; Fouassier, J.P. Green bulb light source induced epoxy cationic polymerization under air using tris(2,2-bipyridine)ruthenium(II) and silyl radicals. Macromolecules 2010, 43, 10191–10195. [Google Scholar]
- Lalevée, J.; Blanchard, N.; Tehfe, M.-A.; Peter, M.; Morlet-Savary, F.; Fouassier, J.P. A novel photopolymerization initiating system based on an iridium complex photocatalyst. Macromol. Rapid Comm. 2011, 32, 917–920. [Google Scholar] [CrossRef]
- Souane, R.; Tehfe, M.-A.; Lalevée, J.; Gigmes, D.; Fouassier, J.P. New initiating systems for thermal cationic polymerization at ambient temperature with in situ formation of Ag(0) nanoparticles: A silane/silver salt combination. Macromol. Chem. Phys. 2010, 211, 1441–1445. [Google Scholar] [CrossRef]
- Voloshanovskii, I.S.; Shevchenko, O.V.; Burenkova, E.V. Benzoyl peroxide-cobalt(II) vinyl-β-diketonate systems as initiators of styrene and methyl methacrylate polymerization. Russian J. Appl. Chem. 2008, 81, 995–998. [Google Scholar]
- Eaborn, C. Novel reduction of ketones by diphenylsilane. J. Chem. Soc. 1955, 2517–2519. [Google Scholar]
- Ouellette, R.J.; Marks, D.L.; Miller, D.; Kesatie, D. Oxidation of silanes. III. Reaction of aryldimethylsilanes with mercuric acetate and thallium triacetate. J. Org. Chem. 1969, 34, 1769–1771. [Google Scholar] [CrossRef]
- Ouellette, R.J.; Marks, D.L. Oxidation of silanes. II. The reaction of ozone with aryldimethylsilanes. J. Organomet. Chem. 1968, 11, 407–413. [Google Scholar] [CrossRef]
- Wang, D.; Buriak, J.M. Trapping silicon surface-based radicals. Langmuir 2006, 22, 6214–6221. [Google Scholar] [CrossRef]
- Liu, Y.; Yamazaki, S.; Yamabe, S.; Nakato, Y. A mild and efficient Si (111) surface modification via hydrosilylation of activated alkynes. J. Mater. Chem. 2005, 15, 4906–4913. [Google Scholar] [CrossRef]
- Rijksen, B.; Van Lagen, B.; Zuilhof, H. Mimicking the silicon surface: Reactivity of silyl radical cations toward nucleophiles. J. Am. Chem. Soc. 2011, 133, 4998–5008. [Google Scholar]
- Buriak, J.M. Organometallic chemistry on silicon and germanium surfaces. Chem. Rev. 2002, 102, 1271–1308. [Google Scholar] [CrossRef]
- Souane, R.; Lalevée, J.; Allonas, X.; Fouassier, J.P. H-Si functionalized silicon surfaces and powders as photoinitiators of polymerization. Macromol. Mater. Eng. 2010, 295, 351–354. [Google Scholar] [CrossRef]
- Ng, A.; Ciampi, S.; James, M.; Harper, J.B.; Gooding, J.J. Comparing the reactivity of alkynes and alkenes on silicon (100) surfaces. Langmuir 2009, 25, 13934–13941. [Google Scholar]
- Scheres, L.; Giesbers, M.; Zuilhof, E. Self-assembly of organic monolayers onto hydrogen-terminated silicon: 1-Alkynes are better than 1-alkenes. Langmuir 2010, 26, 10924–10929. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Chatgilialoglu, C.; Lalevée, J. Recent Applications of the (TMS)3SiH Radical-Based Reagent. Molecules 2012, 17, 527-555. https://doi.org/10.3390/molecules17010527
Chatgilialoglu C, Lalevée J. Recent Applications of the (TMS)3SiH Radical-Based Reagent. Molecules. 2012; 17(1):527-555. https://doi.org/10.3390/molecules17010527
Chicago/Turabian StyleChatgilialoglu, Chryssostomos, and Jacques Lalevée. 2012. "Recent Applications of the (TMS)3SiH Radical-Based Reagent" Molecules 17, no. 1: 527-555. https://doi.org/10.3390/molecules17010527
APA StyleChatgilialoglu, C., & Lalevée, J. (2012). Recent Applications of the (TMS)3SiH Radical-Based Reagent. Molecules, 17(1), 527-555. https://doi.org/10.3390/molecules17010527