Effect of Efavirenz on UDP-Glucuronosyltransferase 1A1, 1A4, 1A6, and 1A9 Activities in Human Liver Microsomes
Abstract
:1. Introduction
2. Results and Discussion
UGT | Marker enzyme | IC50 (μM) | Ki (μM) | Inhibition mode |
---|---|---|---|---|
UGT1A1 | 17β-Estradiol-3-glucuronidation | 45.9 ± 6.4 | 40.3 ± 0.6 | Noncompetitive |
UGT1A4 | Trifluoperazine N-glucuronidation | 2.1 ± 0.2 | 2.0 ± 0.3 | Competitive |
UGT1A6 | Naphthol 1-glucuronidation | No Inhibition | - | - |
UGT1A9 | Propofol glucuronidation | 15.8 ± 2.8 | 9.4 ± 0.9 | Competitive |
3. Experimental
3.1. Materials and Reagents
3.2. Inhibitory Effects of Efavirenz on Activities of Four UGTs in Human Liver Microsomes
Enzymes | Compound | Polarity | SRM Transition | Tube lens (V) | Collision energy (V) |
---|---|---|---|---|---|
Metabolite | |||||
UGT1A1 | 17β-Estradiol-3-glucuronide | negative | 446.9 > 270.9 | 94 | 34 |
UGT1A4 | Trifluoperazine N-glucuronide | positive | 584.20 > 408.13 | 94 | 27 |
UGT1A6 | Naphthol 1-glucuronide | negative | 319.48 > 143.30 | 72 | 18 |
UGT1A9 | Propofol glucuronide | negative | 353.18 > 177.19 | 63 | 20 |
Internal standard | |||||
UGT 1A1, 1A6, 1A9 | Ezetimibe | negative | 408.07 > 271.43 | 45 | 21 |
UGT 1A4 | Meloxicam | positive | 352.05 > 115.38 | 63 | 20 |
3.3. Data Analysis
4. Conclusions
Conflict of Interest
Acknowledgements
- Sample Availability: Not available.
References and Notes
- Rakhmanina, N.Y.; van den Anker, J.N. Efavirenz in the therapy of HIV infection. Expert Opin. Drug Metab. Toxicol. 2010, 6, 95–103. [Google Scholar] [CrossRef]
- Deeks, E.D.; Perry, C.M. Efavirenz/emtricitabine/tenofovir disoproxil fumarate single-tablet regimen (Atripla(R)): A review of its use in the management of HIV infection. Drugs 2010, 70, 2315–2338. [Google Scholar] [CrossRef]
- U.S. Prescribing Information. Available online: http://packageinserts.bms.com/pi/pi_sustiva.pdf (accessed on 1 December 2011).
- Mutlib, A.E.; Chen, H.; Nemeth, G.A.; Markwalder, J.A.; Seitz, S.P.; Gan, L.S.; Christ, D.D. Identification and characterization of efavirenz metabolites by liquid chromatography/mass spectrometry and high field NMR: Species differences in the metabolism of efavirenz. Drug Metab. Dispos. 1999, 27, 1319–1333. [Google Scholar]
- Ward, B.A.; Gorski, J.C.; Jones, D.R.; Hall, S.D.; Flockhart, D.A.; Desta, Z. The cytochrome P450 2B6 (CYP2B6) is the main catalyst of efavirenz primary and secondary metabolism: Implication for HIV/AIDS therapy and utility of efavirenz as a substrate marker of CYP2B6 catalytic activity. J. Pharmacol. Exp. Ther. 2003, 306, 287–300. [Google Scholar] [CrossRef]
- Ogburn, E.T.; Jones, D.R.; Masters, A.R.; Xu, C.; Guo, Y.; Desta, Z. Efavirenz primary and secondary metabolism in vitro and in vivo: Identification of novel metabolic pathways and cytochrome P450 2A6 as the principal catalyst of efavirenz 7-hydroxylation. Drug Metab. Dispos. 2010, 38, 1218–1229. [Google Scholar] [CrossRef]
- Rekic, D.; Roshammar, D.; Mukonzo, J.; Ashton, M. In silico prediction of efavirenz and rifampicin drug-drug interaction considering weight and CYP2B6 phenotype. Br. J. Clin. Pharmacol. 2011, 71, 536–543. [Google Scholar] [CrossRef]
- Bae, S.K.; Jeong, Y.J.; Lee, C.; Liu, K.H. Identification of human UGT isoforms responsible for glucuronidation of efavirenz and its three hydroxy metabolites. Xenobiotica 2011, 41, 437–444. [Google Scholar] [CrossRef]
- Cho, D.Y.; Ogburn, E.T.; Jones, D.; Desta, Z. Contribution of N-glucuronidation to efavirenz elimination in vivo in the basal and rifampin-induced metabolism of efavirenz. Antimicrob. Agents Chemother. 2011, 55, 1504–1509. [Google Scholar] [CrossRef]
- Belanger, A.S.; Caron, P.; Harvey, M.; Zimmerman, P.A.; Mehlotra, R.K.; Guillemette, C. Glucuronidation of the antiretroviral drug efavirenz by UGT2B7 and an in vitro investigation of drug-drug interaction with zidovudine. Drug Metab. Dispos. 2009, 37, 1793–1796. [Google Scholar] [CrossRef]
- Guillemette, C.; Levesque, E.; Harvey, M.; Bellemare, J.; Menard, V. UGT genomic diversity: Beyond gene duplication. Drug Metab. Rev. 2010, 42, 22–42. [Google Scholar]
- Izukawa, T.; Nakajima, M.; Fujiwara, R.; Yamanaka, H.; Fukami, T.; Takamiya, M.; Aoki, Y.; Ikushiro, S.; Sakaki, T.; Yokoi, T. Quantitative analysis of UDP-glucuronosyl transferase (UGT) 1A and UGT2B expression levels in human livers. Drug Metab. Dispos. 2009, 37, 1759–1768. [Google Scholar] [CrossRef]
- Ohno, S.; Nakajin, S. Determination of mRNA expression of human UDP-glucuronosyl transferases and application for localization in various human tissues by real-time reverse transcriptase-polymerase chain reaction. Drug Metab. Dispos. 2009, 7, 32–40. [Google Scholar] [CrossRef]
- Kiang, T.K.; Ensom, M.H.; Chang, T.K. UDP-glucuronosyltransferases and clinical drug-drug interactions. Pharmacol. Ther. 2005, 106, 97–132. [Google Scholar] [CrossRef]
- Mohamed, M.F.; Frye, R.F. Effects of herbal supplements on drug glucuronidation. Review of clinical, animal, and in vitro studies. Planta Med. 2011, 77, 311–321. [Google Scholar] [CrossRef]
- Ebert, U.; Thong, N.Q.; Qertel, R.; Kirch, W. Effects of rifampicin and cimetidine on pharmacokinetics and pharmacodynamics of lamotrigine in healthy subjects. Eur. J. Clin. Pharmacol. 2000, 56, 299–304. [Google Scholar] [CrossRef]
- van der Lee, M.J.; Dawood, I.; ter Hofstede, H.J.; de Graaff-Teulen, M.J.; van Ewijk-Beneken Kolmer, E.W.; Caliskan-Yassen, N.; Koopmans, P.P.; Burger, D.M. Lopinavir/ritonavir reduces lamotrigine plasma concentrations in healthy subjects. Clin. Pharmacol. Ther. 2006, 80, 159–168. [Google Scholar] [CrossRef]
- Uchaipichat, V.; Mackenzie, P.I.; Elliot, D.J.; Miners, J.O. Selectivity of substrate (trifluoperazine) and inhibitor (amitriptyline, androsterone, canrenoic acid, hecogenin, phenylbutazone, quinidine, quinine, and sulfinpyrazone) “probes” for human UDP-glucuronosyltransferases. Drug Metab. Dispos. 2006, 34, 449–456. [Google Scholar]
- Court, M.H. Isoform-selective probe substrates for in vitro studies of human UDP-glucuronosyltransferases. Methods Enzymol. 2005, 400, 104–116. [Google Scholar] [CrossRef]
- Donato, M.T.; Montero, S.; Castell, J.V.; Gómez-Lechón, M.J.; Lahoz, A. Validated assay for studying activity profiles of human liver UGTs after drug exposure: Inhibition and induction studies. Anal. Bioanal. Chem. 2010, 96, 2251–2263. [Google Scholar]
- Ji, H.Y.; Liu, K.H.; Lee, H.; Im, S.R.; Shim, H.J.; Son, M.; Lee, H.S. Corydaline inhibits multiple cytochrome P450 and UDP-glucuronosyltransferase enzyme activities in human liver microsomes. Molecules 2011, 16, 6591–6602. [Google Scholar] [CrossRef]
- Marzolini, C.; Telenti, A.; Decosterd, L.A.; Greub, G.; Biollaz, J.; Buclin, T. Efavirenz plasma levels can predict treatment failure and central nervous system side effects in HIV-1-infected patients. AIDS 2001, 15, 71–75. [Google Scholar] [CrossRef]
- Bourcier, K.; Hyland, R.; Kempshall, S.; Jones, R.; Maximilien, J.; Irvine, N.; Jones, B. Investigation into UDP-glucuronosyltransferase (UGT) enzyme kinetics of imidazole- and triazole-containing antifungal drugs in human liver microsomes and recombinant UGT enzymes. Drug Metab. Dispos. 2010, 38, 923–929. [Google Scholar] [CrossRef]
- Hyland, R.; Osborne, T.; Payne, A.; Kempshall, S.; Logan, Y.R.; Ezzeddine, K.; Jones, B. In vitro and in vivo glucuronidation of midazolam in humans. Br. J. Clin. Pharmacol. 2009, 67, 445–454. [Google Scholar] [CrossRef]
- Kaku, T.; Ogura, K.; Nishiyama, T.; Ohnuma, T.; Muro, K.; Hiratsuka, A. Quaternary ammonium-linked glucuronidation of tamoxifen by human liver microsomes and UDP-glucuronosyltransferase 1A4. Biochem. Pharmacol. 2004, 67, 2093–2102. [Google Scholar] [CrossRef]
- Rowland, A.; Elliot, D.J.; Williams, J.A.; Mackenzie, P.I.; Dickinson, R.G.; Miners, J.O. In vitro characterization of lamotrigine N2-glucuronidation and the lamotrigine-valproic acid interaction. Drug Metab. Dispos. 2006, 34, 1055–1062. [Google Scholar]
- Laverdiere, I.; Caron, P.; Harvey, M.; Levesque, E.; Guillemette, C. In vitro investigation of human UDP-glucuronosyltransferase isoforms responsible for tacrolimus glucuronidation: Predominant contribution of UGT1A4. Drug Metab. Dispos. 2011, 39, 1127–1130. [Google Scholar] [CrossRef]
- Miners, J.O.; Bowalgaha, K.; Elliot, D.J.; Baranczewski, P.; Knights, K.M. Characterization of niflumic acid as a selective inhibitor of human liver microsomal UDP-glucuronosyltransferase 1A9: Application to the reaction phenotyping of acetaminophen glucuronidation. Drug Metab. Dispos. 2011, 39, 644–652. [Google Scholar] [CrossRef]
- Mano, Y.; Usui, T.; Kamimura, H. In vitro inhibitory effects of non-steroidal anti-inflammatory drugs on 4-methylumbelliferone glucuronidation in recombinant human UDP-glucuronosyltransferase 1A9-potent inhibition by niflumic acid. Biopharm. Drug Dispos. 2006, 27, 1–6. [Google Scholar] [CrossRef]
- Nexavar (Sorafenib) - Drug Interactions, Contraindications, Overdosage. Available online: http://www.druglib.com/druginfo/nexavar/interactions_overdosage_contraindications/ (accessed on 2 October 2008).
- Tougou, K.; Gotou, H.; Ohno, Y.; Nakamura, A. Stereoselective glucuronidation and hydroxylation of etodolac by UGT1A9 and CYP2C9 in man. Xenobiotica 2004, 34, 449–461. [Google Scholar] [CrossRef]
- Lautala, P.; Ethell, B.T.; Taskinen, J.; Burchell, B. The specificity of glucuronidation of entacapone and tolcapone by recombinant human UDP-glucuronosyltransferases. Drug Metab. Dispos. 2000, 28, 1385–1389. [Google Scholar]
- Chu, X.Y.; Liang, Y.; Cai, X.; Cuevas-Licea, K.; Rippley, R.K.; Kassahun, K.; Shou, M.; Braun, M.P.; Doss, G.A.; Anari, M.R. Metabolism and renal elimination of gaboxadol in humans: Role of UDP-glucuronosyltransferases and transporters. Pharm. Res. 2009, 26, 459–468. [Google Scholar] [CrossRef]
- Borlak, J.; Gasparic, A.; Locher, M.; Schupke, H.; Hermann, R. N-Glucuronidation of the antiepileptic drug retigabine: Results from studies with human volunteers, heterologously expressed human UGTs, human liver, kidney, and liver microsomal membranes of Crigler-Najjar type II. Metabolism 2006, 55, 711–721. [Google Scholar] [CrossRef]
- Luukkanen, L.; Taskinen, J.; Kurkela, M.; Kostiainen, R.; Hirvonen, J.; Finel, M. Kinetic characterization of the 1A subfamily of recombinant human UDP-glucuronosyltransferases. Drug Metab. Dispos. 2005, 33, 1017–1026. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ji, H.Y.; Lee, H.; Lim, S.R.; Kim, J.H.; Lee, H.S. Effect of Efavirenz on UDP-Glucuronosyltransferase 1A1, 1A4, 1A6, and 1A9 Activities in Human Liver Microsomes. Molecules 2012, 17, 851-860. https://doi.org/10.3390/molecules17010851
Ji HY, Lee H, Lim SR, Kim JH, Lee HS. Effect of Efavirenz on UDP-Glucuronosyltransferase 1A1, 1A4, 1A6, and 1A9 Activities in Human Liver Microsomes. Molecules. 2012; 17(1):851-860. https://doi.org/10.3390/molecules17010851
Chicago/Turabian StyleJi, Hye Young, Hyeri Lee, Sae Rom Lim, Jeong Han Kim, and Hye Suk Lee. 2012. "Effect of Efavirenz on UDP-Glucuronosyltransferase 1A1, 1A4, 1A6, and 1A9 Activities in Human Liver Microsomes" Molecules 17, no. 1: 851-860. https://doi.org/10.3390/molecules17010851
APA StyleJi, H. Y., Lee, H., Lim, S. R., Kim, J. H., & Lee, H. S. (2012). Effect of Efavirenz on UDP-Glucuronosyltransferase 1A1, 1A4, 1A6, and 1A9 Activities in Human Liver Microsomes. Molecules, 17(1), 851-860. https://doi.org/10.3390/molecules17010851