Recent Updates in Redox Regulation and Free Radical Scavenging Effects by Herbal Products in Experimental Models of Parkinson’s Disease
Abstract
:1. Introduction
2. Redox Regulation of Neuronal Survival in PD
3. Free Radicals Scavengers and PD
4. Oxidative Stress and Toxin-Induced PD Models
5. Herbal Products and Neurodegenerative Diseases
6. Antioxidant Herbs in Toxin-Induced PD Models
6.1. Chrysanthemum indicum
6.2. Gastrodia elata
6.3. Ginseng
6.4. Polygala tenuifolia
6.5. Bacopa monnieri
6.6. Hyoscyamus niger
6.7. Hibiscus asper
6.8. Melissa officinalis
6.9. Cassia obtusifolia
6.10. Croton celtidifolius
6.11. Gynostemma pentaphyllum
6.12. Thuja orientalis
6.13. Paullinia cupana
6.14. Morus alba
6.15. Ginkgo biloba
Plant name/species | Extract/ constituent | Dose | Toxin/tested subjects | Biological activity and targets | Ref. |
---|---|---|---|---|---|
Chrysanthemum indicum | Ethanol extract | 1, 10 and 100 µg | MPP+/SH-SY5Y cells | Regulation of Bax/Bcl-2 ratio & decreasing, inhibition of free radicals and oxidative stress | [80] [43] |
Gastrodia elata | Vanillyl alcohol | 1, 10 and 20 µM | MPP+/MN9D cells | Regulation of Bax/Bcl-2 ratio & decreasing oxidative stress | [90] |
Methanol extract | 500 or 1,000 mg/kg | Methamphetamine/C57BL/6J mice | Decrease oxidative stress | [91] | |
Ginseng | Aqueous extract | 0.01, 01 and 0.2 mg/mL | MPP+/SH-SY5Y cells | Decrease in Cytochrome c, Caspace-3 activation & ROS generation | [101] |
Panaxatriol saponins | 100 mg/kg, twice daily for 7 days | MPTP/Kunming mice | Improvement in behavioral impairments caused by MPTP | [102] | |
Polygala tenuifolia | Aqueous extract | 0.05-µg/mL and 100 mg/kg | 6-OHDA/PC12 cells and MPP+/ C57BL/6 mice | Decrease in ROS & protection of mesencephalic dopaminergic neurons | [106] |
Tenuigenin | 10 µM | 6-OHDA/SH-SY5Y cells | Increased expression of glutathione (GSH) and superoxide dismutase (SOD) | [107] | |
Bacopa monnieri | Standardized aqueous extract | 10 mg/mL | MPP+, paraquat/ SK-N-SH cells | Decrease in intracellular ROS & upregulation of Nrf2 | [111] |
Standardized aqueous extract | 0.05 and 0.1% | Rotenone/Drosophila melanogaster flies | Ablation of oxidative stress and dopamine depletion | [112] | |
Ethanolic extract | 2, 4 and 6 µg/1 mg/kg b.w./day, i.p. | Rotenone/N27 cell and prepubertal mice | Decrease oxidative stress & increase Anti-oxidant defense | [116] | |
Ethanolic extract | 0.5 and 1.0 µg | 3-nitropropionicAcid/prepubertal mice | Scavenge free radicals, maintain redox status, and upregulate antioxidant machinery. | [115] | |
Hyoscyamus niger | Seed extract | 125–500 mg/kg, p.o. | MPTP/Male Balb/c mice | Alleviation of motor deficits produced by MPTP and inhibition of hydroxyl radical | [1211] |
Hibiscus asper | Methanolic extract | 50 and 100 mg/kg, i.p., daily, for 7 days | 6-HDA/Wistar rats | Increased antioxidant defense system like GSH and SOD & decreased MDA levels | [123] |
Melissa officinalis | Aqueous extract | 100 mg/kg/day in the drinking water | Manganeese/ Male albino mice | Decrease in thiobarbituric acid & Increased SOD and catalase | [126] |
Cassia obtusifolia | Seed extract | 0.1-10 µg/mL/50 mg/kg, 15 days | 6-OHA/PC12 cells and MPTP/Male C57BL/6 mice | Inhibition of GSH depletioncaspase-3 activation/Decreased T-turn and T-LA time in pole test | [128] |
Seed extract | 1.0 and 10 µg | NMDA, 3-NP, Amyloid β/ Hippocampal cultures from C57Bl/6 mice | Reduce excitotoxicity, mitochondrial dysfunction, and Aβ toxicity. regulation and maintenance of cellular homeostasis and apoptosis | [129] | |
Croton celtidifolius | Bark | 10 mg/kg, i.p. | MPTP/Wistar rats | Prevention of mitochondrial complex-I inhibition & improvement in memory deficits | [132] |
Gynostemma pentaphyllum | Gypenosides | 100, 200 and 400 mg/kg | MPTP/C57BL/6 mice | Increase in SOD and GSH content & survival of nigral dopaminergic neurons | [177] |
Thuja orientalis | Ethanolic leaf extract | 10 µg/mL | 6-OHDA/SH-SY5Y cells | Decrease in ROS production | [143] |
Paullinia cupana | Seed powder | 0.312 and 0.625 mg/mL | Rotenone/SH-SY5Y cells | Survival of SH-SY5Y cells exposed to rotenone | [151] |
Mulberry | Ethanol extract | 1, 10 and 100 µg/mL/500 mg/mL | 6-OHDA/SH-SY5Y cells and MPP+/Male C57BL/6 mice | Decrease in ROS, NO & Caspase-3 generation/Improvement in behavioral deficits | [162] |
Ginkgo biloba | EGb761 extract | 40 mg/kg | MPTP/C57BL/ 6J mice | Decrease in lipid peroxidation, increase in striatal dopamine and locomotor activity | [164] |
Uncaria rhynchophylla | Aqueous extract | 0.1, 0.5 and 1.0 µg ( in vitro) and 5 mg/kg/day for 14 days (in vivo) | 6-OHDA/PC12 cells and6-OHDA/ Sprague–Dawley rats | Reduced cell death, generation of ROS, increased GSH levels, and inhibited caspase-3 activity. Lowered dopaminergic cell loss, antioxidative and anti-apoptotic activities. | [165] |
Trifolium pretense | Aqueous extract | 0.5, 1 and 2 µg/mL | hydrogen peroxide/HCN 1-A cells | Antioxidant activity | [166] |
Salvia miltiorrhiza | Salvianolic acid B | 0.1, 1.0 and 10 µM | 6-OHDA/SH-SY5Y cells | Redox regulation and antioxidant effect | [167] |
Hypericum perforatum | Flavonoid rich extract | 3.125, 12.5 and 25 µg/mL | hydrogen peroxide/PC12 cells | Elevated the cell viability decreased the levels of LDH release and decreased the occurrence of apoptotic cells. Antioxidant and apoptotic activity | [178] |
Fraxinus sieboldiana | 6,7-di- O-glucopyranosyl-esculetin | 0.1, 1 and 10 µM | Dopamine/SH-SY5Y cells | Redox regulation and antioxidant properties | [179] |
Scutellaria baicalensis | Baicalein | 0.05, 0.5 and 5 µg/mL | 6-OHDA/SH-SY5Y cells and Sprague–Dawley rats | Antioxidant and antiapoptotic activities | [169] |
Withania somnifera | Aqueous root extract | 100 mg/kg | MPTP/ C57BL/6 mice | Regulation of redox status and antioxidant effects | [170] |
Cyperus rotundus | Aqueous rhizome extract | 50 and 100 µg /mL | 6-OHDA/PC12 cells | Antioxidant and antiapoptotic activities | [174] |
Delphinium denudatum | ethanolic extract | 200, 400 and 600 mg/kg | 6-OHDA/Rats | Regulation of antioxidative enzymes and antioxidant effects | [175] |
Ilex paraguariensis | Hydro-alcoholic extract | 250 and 500 mg/kg | MPTP/C57BL/6 mice | Antioxidant activity | [176] |
7. Conclusions and Future Perspectives
Acknowledgements
References
- Dowding, C.H.; Shenton, C.L.; Salek, S.S. A review of the health-related quality of life and economic impact of Parkinson’s disease. Drugs Aging 2006, 23, 693–721. [Google Scholar] [CrossRef]
- Lokk, J. Caregiver strain in Parkinson’s disease and the impact of disease duration. Eur. J. Phys. Rehabil. Med. 2008, 44, 39–45. [Google Scholar]
- Winter, Y.; von Campenhausen, S.; Brozova, H.; Skoupa, J.; Reese, J.P.; Botzel, K.; Eggert, K.; Oertel, W.H.; Dodel, R.; Ruzicka, E. Costs of Parkinson’s disease in eastern Europe: A Czech cohort study. Parkinsonism Relat. Disord. 2010, 16, 51–56. [Google Scholar] [CrossRef]
- Gao, H.M.; Liu, B.; Zhang, W.; Hong, J.S. Novel anti-inflammatory therapy for Parkinson’s disease. Trends Pharmacol. Sci. 2003, 24, 395–401. [Google Scholar] [CrossRef]
- Kidd, P.M. Parkinson’s disease as multifactorial oxidative neurodegeneration: Implications for integrative management. Altern. Med. Rev. 2000, 5, 502–529. [Google Scholar]
- Olanow, C.W.; Tatton, W.G. Etiology and pathogenesis of Parkinson’s disease. Annu. Rev. Neurosci. 1999, 22, 123–144. [Google Scholar] [CrossRef]
- Suchowersky, O. Parkinson’s disease: Medical treatment of moderate to advanced disease. Curr. Neurol. Neurosci. Rep. 2002, 2, 310–316. [Google Scholar] [CrossRef]
- Trachootham, D.; Lu, W.; Ogasawara, M.A.; Nilsa, R.D.; Huang, P. Redox regulation of cell survival. Antioxid. Redox Signal 2008, 10, 1343–1374. [Google Scholar] [CrossRef]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef]
- Haddad, J.J. Antioxidant and prooxidant mechanisms in the regulation of redox(y)-sensitive transcription factors. Cell Signal 2002, 14, 879–897. [Google Scholar] [CrossRef]
- Bauer, M.K.; Vogt, M.; Los, M.; Siegel, J.; Wesselborg, S.; Schulze-Osthoff, K. Role of reactive oxygen intermediates in activation-induced CD95 (APO-1/Fas) ligand expression. J. Biol. Chem. 1998, 273, 8048–8055. [Google Scholar]
- Kowaltowski, A.J.; Vercesi, A.E.; Fiskum, G. Bcl-2 prevents mitochondrial permeability transition and cytochrome c release via maintenance of reduced pyridine nucleotides. Cell Death Differ. 2000, 7, 903–910. [Google Scholar] [CrossRef]
- Leslie, N.R. The redox regulation of PI 3-kinase-dependent signaling. Antioxid. Redox Signal 2006, 8, 1765–1774. [Google Scholar] [CrossRef]
- Matsuzawa, A.; Ichijo, H. Stress-responsive protein kinases in redox-regulated apoptosis signaling. Antioxid. Redox Signal 2005, 7, 472–481. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Z.B.; Xu, J.X. Effect of cytochrome c on the generation and elimination of O2− and H2O2 in mitochondria. J. Biol. Chem. 2003, 278, 2356–2360. [Google Scholar]
- Addabbo, F.; Montagnani, M.; Goligorsky, M.S. Mitochondria and reactive oxygen species. Hypertension 2009, 53, 885–892. [Google Scholar] [CrossRef]
- Archer, S.L.; Gomberg-Maitland, M.; Maitland, M.L.; Rich, S.; Garcia, J.G.; Weir, E.K. Mitochondrial metabolism, Redox signaling, And fusion: A mitochondria-ROS-HIF- 1alpha-Kv1.5 O2-sensing pathway at the intersection of pulmonary hypertension and cancer. Am. J. Physiol. Heart Circ. Physiol. 2008, 294, H570–H578. [Google Scholar]
- Beal, M.F. Therapeutic approaches to mitochondrial dysfunction in Parkinson’s disease. Parkinsonism Relat. Disord. 2009, 15, S189–S194. [Google Scholar] [CrossRef]
- Fasano, M.; Bergamasco, B.; Lopiano, L. Modifications of the iron-neuromelanin system in Parkinson’s disease. J. Neurochem. 2006, 96, 909–916. [Google Scholar] [CrossRef]
- Przedborski, S.; Ischiropoulos, H. Reactive oxygen and nitrogen species: weapons of neuronal destruction in models of Parkinson’s disease. Antioxid. Redox Signal 2005, 7, 685–693. [Google Scholar] [CrossRef]
- Ischiropoulos, H.; Beckman, J.S. Oxidative stress and nitration in neurodegeneration: Cause, Effect, Or association? J. Clin. Invest. 2003, 111, 163–169. [Google Scholar]
- Anderson, S.; Bankier, A.T.; Barrell, B.G.; de Bruijn, M.H.; Coulson, A.R.; Drouin, J.; Eperon, I.C.; Nierlich, D.P.; Roe, B.A.; Sanger, F.; et al. Sequence and organization of the human mitochondrial genome. Nature 1981, 290, 457–465. [Google Scholar] [CrossRef]
- Dexter, D.T.; Wells, F.R.; Lees, A.J.; Agid, F.; Agid, Y.; Jenner, P.; Marsden, C.D. Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson’s disease. J. Neurochem. 1989, 52, 1830–1836. [Google Scholar] [CrossRef]
- Pappolla, M.A.; Chyan, Y.J.; Poeggeler, B.; Bozner, P.; Ghiso, J.; LeDoux, S.P.; Wilson, G.L. Alzheimer beta protein mediated oxidative damage of mitochondrial DNA: Prevention by melatonin. J. Pineal Res. 1999, 27, 226–229. [Google Scholar] [CrossRef]
- Retz, W.; Gsell, W.; Münch, G.; Rosler, M.; Riederer, P. Free radicals in Alzheimer’s disease. J. Neural. Transm. 1998, 221–236. [Google Scholar]
- Saggu, H.; Cooksey, J.; Dexter, D.; Wells, F.R.; Lees, A.; Jenner, P.; Marsden, C.D. A selective increase in particulate superoxide dismutase activity in parkinsonian substantia nigra. J. Neurochem. 1989, 53, 692–697. [Google Scholar] [CrossRef]
- Sofic, E.; Lange, K.W.; Jellinger, K.; Riederer, P. Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson’s disease. Neurosci. Lett. 1992, 142, 128–130. [Google Scholar] [CrossRef]
- Przedborski, S.; Levivier, M.; Jiang, H.; Ferreira, M.; Jackson-Lewis, V.; Donaldson, D.; Togasaki, D.M. Dose-dependent lesions of the dopaminergic nigrostriatal pathway induced by intrastriatal injection of 6-hydroxydopamine. Neuroscience 1995, 67, 631–647. [Google Scholar] [CrossRef]
- Olanow, C.W.; Jenner, P.; Tatton, N.A.; Tatton, W.G. Parkinson’s Disease and Movement Disorders; Williams & Wilkins: Baltimore, MD, USA, 1998; pp. 67–103. [Google Scholar]
- Uttara, B.; Singh, A.V.; Zamboni, P.; Mahajan, R.T. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol. 2009, 7, 65–74. [Google Scholar] [CrossRef]
- Zhou, C.; Huang, Y.; Przedborski, S. Oxidative stress in Parkinson’s disease: A mechanism of pathogenic and therapeutic significance. Ann. NY Acad. Sci. 2008, 1147, 93–104. [Google Scholar] [CrossRef]
- Ebadi, M.; Srinivasan, S.K.; Baxi, M.D. Oxidative stress and antioxidant therapy in Parkinson’s disease. Prog. Neurobiol. 1996, 48, 1–19. [Google Scholar] [CrossRef]
- Jenner, P. Oxidative stress in Parkinson’s disease. Ann. Neurol. 2003, 53, S26–S36. [Google Scholar] [CrossRef]
- Jenner, P.; Olanow, C.W. Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology 1996, 47, S161–S170. [Google Scholar] [CrossRef]
- Bove, J.; Prou, D.; Perier, C.; Przedborski, S. Toxin-induced models of Parkinson’s disease. NeuroRx. 2005, 2, 484–494. [Google Scholar] [CrossRef]
- Dauer, W.; Przedborski, S. Parkinson’s disease: Mechanisms and models. Neuron 2003, 39, 889–909. [Google Scholar] [CrossRef]
- Ambani, L.M.; Van Woert, M.H.; Murphy, S. Brain peroxidase and catalase in Parkinson disease. Arch. Neurol. 1975, 32, 114–118. [Google Scholar] [CrossRef]
- Kish, S.J.; Morito, C.; Hornykiewicz, O. Glutathione peroxidase activity in Parkinson’s disease brain. Neurosci. Lett. 1985, 58, 343–346. [Google Scholar] [CrossRef]
- Perry, T.L.; Godin, D.V.; Hansen, S. Parkinson’s disease: A disorder due to nigral glutathione deficiency? Neurosci. Lett. 1982, 33, 305–310. [Google Scholar] [CrossRef]
- Riederer, P.; Sofic, E.; Rausch, W.D.; Schmidt, B.; Reynolds, G.P.; Jellinger, K.; Youdim, M.B. Transition metals, Ferritin, Glutathione, And ascorbic acid in parkinsonian brains. J. Neurochem. 1989, 52, 515–520. [Google Scholar] [CrossRef]
- Prasad, K.N.; Cole, W.C.; Kumar, B. Multiple antioxidants in the prevention and treatment of Parkinson’s disease. J. Am. Coll. Nutr. 1999, 18, 413–423. [Google Scholar]
- Draczynska-Lusiak, B.; Doung, A.; Sun, A.Y. Oxidized lipoproteins may play a role in neuronal cell death in Alzheimer disease. Mol. Chem. Neuropathol. 1998, 33, 139–148. [Google Scholar] [CrossRef]
- Droge, W.; Kinscherf, R.; Hildebrandt, W.; Schmitt, T. The deficit in low molecular weight thiols as a target for antiageing therapy. Curr. Drug Targets 2006, 7, 1505–1512. [Google Scholar]
- Poeggeler, B. Melatonin, aging, and age-related diseases: Perspectives for prevention, Intervention, And therapy. Endocrine 2005, 27, 201–212. [Google Scholar] [CrossRef]
- Victor, V.M.; Rocha, M. Targeting antioxidants to mitochondria: A potential new therapeutic strategy for cardiovascular diseases. Curr. Pharm. Des. 2007, 13, 845–863. [Google Scholar] [CrossRef]
- Lau, F.C.; Shukitt-Hale, B.; Joseph, J.A. Nutritional intervention in brain aging: Reducing the effects of inflammation and oxidative stress. Subcell Biochem. 2007, 42, 299–318. [Google Scholar] [CrossRef]
- Sudha, K.; Rao, A.V.; Rao, S.; Rao, A. Free radical toxicity and antioxidants in Parkinson’s disease. Neurol. India 2003, 51, 60–62. [Google Scholar]
- Weber, C.A.; Ernst, M.E. Antioxidants, Supplements, And Parkinson’s disease. Ann. Pharmacother. 2006, 40, 935–938. [Google Scholar] [CrossRef]
- Ungerstedt, U. 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur. J. Pharmacol. 1968, 5, 107–110. [Google Scholar] [CrossRef]
- Cohen, G. Oxy-radical toxicity in catecholamine neurons. Neurotoxicology 1984, 5, 77–82. [Google Scholar]
- Kitamura, Y.; Kakimura, J.; Taniguchi, T. Protective effect of talipexole on MPTP-treated planarian, a unique parkinsonian worm model. Jpn. J. Pharmacol. 1998, 78, 23–29. [Google Scholar] [CrossRef]
- Kopin, I.J. MPTP: An industrial chemical and contaminant of illicit narcotics stimulates a new era in research on Parkinson's disease. Environ. Health Perspect. 1987, 75, 45–51. [Google Scholar] [CrossRef]
- Davis, G.C.; Williams, A.C.; Markey, S.P.; Ebert, M.H.; Caine, E.D.; Reichert, C.M.; Kopin, I.J. Chronic Parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatr. Res. 1979, 1, 249–254. [Google Scholar] [CrossRef]
- Forno, L.S.; DeLanney, L.E.; Irwin, I.; Langston, J.W. Similarities and differences between MPTP-induced parkinsonsim and Parkinson’s disease. Neuropathologic considerations. Adv. Neurol. 1993, 60, 600–608. [Google Scholar]
- Muralikrishnan, D.; Mohanakumar, K.P. Neuroprotection by bromocriptine against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity in mice. FASEB J. 1998, 12, 905–912. [Google Scholar]
- Sriram, K.; Pai, K.S.; Boyd, M.R.; Ravindranath, V. Evidence for generation of oxidative stress in brain by MPTP: In vitro and in vivo studies in mice. Brain Res. 1997, 749, 44–52. [Google Scholar] [CrossRef]
- Wullner, U.; Loschmann, P.A.; Schulz, J.B.; Schmid, A.; Dringen, R.; Eblen, F.; Turski, L.; Klockgether, T. Glutathione depletion potentiates MPTP and MPP+ toxicity in nigral dopaminergic neurones. Neuroreport 1996, 7, 921–923. [Google Scholar] [CrossRef]
- Ali, S.F.; David, S.N.; Newport, G.D.; Cadet, J.L.; Slikker, W., Jr. MPTP-induced oxidative stress and neurotoxicity are age-dependent: Evidence from measures of reactive oxygen species and striatal dopamine levels. Synapse 1994, 18, 27–34. [Google Scholar] [CrossRef]
- Chiba, K.; Trevor, A.; Castagnoli, N., Jr. Metabolism of the neurotoxic tertiary amine, MPTP, By brain monoamine oxidase. Biochem. Biophys. Res. Commun. 1984, 120, 574–578. [Google Scholar] [CrossRef]
- Markey, S.P.; Johannessen, J.N.; Chiueh, C.C.; Burns, R.S.; Herkenham, M.A. Intraneuronal generation of a pyridinium metabolite may cause drug-induced parkinsonism. Nature 1984, 311, 464–467. [Google Scholar] [CrossRef]
- Bashkatova, V.; Alam, M.; Vanin, A.; Schmidt, W.J. Chronic administration of rotenone increases levels of nitric oxide and lipid peroxidation products in rat brain. Exp. Neurol. 2004, 186, 235–241. [Google Scholar] [CrossRef]
- Sherer, T.B.; Betarbet, R.; Testa, C.M.; Seo, B.B.; Richardson, J.R.; Kim, J.H.; Miller, G.W.; Yagi, T.; Matsuno-Yagi, A.; Greenamyre, J.T. Mechanism of toxicity in rotenone models of Parkinson's disease. J. Neurosci. 2003, 23, 10756–10764. [Google Scholar]
- Day, B.J.; Patel, M.; Calavetta, L.; Chang, L.Y.; Stamler, J.S. A mechanism of paraquat toxicity involving nitric oxide synthase. Proc. Natl. Acad. Sci. USA 1999, 96, 12760–12765. [Google Scholar] [CrossRef]
- Nijveldt, R.J.; van Nood, E.; van Hoorn, D.E.; Boelens, P.G.; van Norren, K.; van Leeuwen, P.A. Flavonoids: A review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr. 2001, 74, 418–425. [Google Scholar]
- Gijtenbeek, J.M.; van den Bent, M.J.; Vecht, C.J. Cyclosporine neurotoxicity: A review. J. Neurol. 1999, 246, 339–346. [Google Scholar] [CrossRef]
- Johnson, W.C.; Williford, W.O. Benefits, Morbidity, And mortality associated with long-term administration of oral anticoagulant therapy to patients with peripheral arterial bypass procedures: A prospective randomized study. J. Vasc. Surg. 2002, 35, 413–421. [Google Scholar] [CrossRef]
- Heinrich, M.; Gibbons, S. Ethnopharmacology in drug discovery: An analysis of its role and potential contribution. J. Pharm. Pharmacol. 2001, 53, 425–432. [Google Scholar] [CrossRef]
- Halliwell, B. Vitamin C: Antioxidant or pro-oxidant in vivo? Free Radic. Res. 1996, 25, 439–454. [Google Scholar] [CrossRef]
- Osiecki, M.; Ghanavi, P.; Atkinson, K.; Nielsen, L.K.; Doran, M.R. The ascorbic acid paradox. Biochem. Biophys. Res. Commun. 2010, 400, 466–470. [Google Scholar] [CrossRef]
- Kang, M.J.; Lee, S.S.; Koh, H.C. Prooxidant properties of ascorbic acid in the nigrostriatal dopaminergic system of C57BL/6 mice. Toxicology 2012, 294, 1–8. [Google Scholar] [CrossRef]
- de Rijk, M.C.; Breteler, M.M.; den Breeijen, J.H.; Launer, L.J.; Grobbee, D.E.; van der Meche, F.G.; Hofman, A. Dietary antioxidants and Parkinson disease. The Rotterdam Study. Arch. Neurol. 1997, 54, 762–765. [Google Scholar] [CrossRef]
- Kim, T.H.; Cho, K.H.; Jung, W.S.; Lee, M.S. Herbal medicines for Parkinson’s disease: A systematic review of randomized controlled trials. PLoS One 2012, 7, e35695. [Google Scholar]
- Ramarathnam, N.; Ochi, H.; Takeuchi, M. Antioxidants Defense system in Vegetable Extracts. In Natural Antioxidants: Chemistry, Health Effects and Applications; Shahidi, F., Ed.; Aoca Press: Champaign, IL, USA, 1997. [Google Scholar]
- Houghton, P.J.; Howes, M.J. Natural products and derivatives affecting neurotransmission relevant to Alzheimer’s and Parkinson’s disease. Neurosignals 2005, 14, 6–22. [Google Scholar] [CrossRef]
- Van Kampen, J.; Robertson, H.; Hagg, T.; Drobitch, R. Neuroprotective actions of the ginseng extract G115 in two rodent models of Parkinson’s disease. Exp. Neurol. 2003, 184, 521–529. [Google Scholar] [CrossRef]
- Shunying, Z.; Yang, Y.; Huaidong, Y.; Yue, Y.; Guolin, Z. Chemical composition and antimicrobial activity of the essential oils of Chrysanthemum indicum. J. Ethnopharmacol. 2005, 96, 151–158. [Google Scholar] [CrossRef]
- Kato, T.; Noguchi, K.; Miyamoto, Y.; Suekawa, M.; Aburada, M.; Hosoya, E.; Sakanashi, M. Effects of Chrysanthemum indicum Linn. on coronary, Vertebral, Renal and aortic blood flows of the anesthetized dog. Arch. Int. Pharmacodyn. Ther. 1987, 285, 288–300. [Google Scholar]
- Yu, D.Q.; Xie, F.Z.; He, W.Y.; Liang, X.T. Application of 2D NMR techniques in the structure determination of chrysanthetriol. Yao Xue Xue Bao 1992, 27, 191–196. [Google Scholar]
- Wang, Z.D.; Huang, C.; Li, Z.F.; Yang, J.; Li, B.H.; Liang, R.R.; Dai, Z.J.; Liu, Z.W. Chrysanthemum indicum ethanolic extract inhibits invasion of hepatocellular carcinoma via regulation of MMP/TIMP balance as therapeutic target. Oncol. Rep. 2010, 23, 413–421. [Google Scholar]
- Kim, I.S.; Ko, H.M.; Koppula, S.; Kim, B.W.; Choi, D.K. Protective effect of Chrysanthemum indicum Linne against 1-methyl-4-phenylpridinium ion and lipopolysaccharide-induced cytotoxicity in cellular model of Parkinson’s disease. Food Chem. Toxicol. 2011, 49, 963–973. [Google Scholar]
- Debnath, T.; Jin, H.L.; Hasnat, M.A.; Kim, Y.; Samad, N.B.; Park, P.J.; Lim, B.O. Antioxidant potential and oxidative DNA damage preventive activity of Chrysanthemum indicum extracts. J. Food Biochem. 2012, 1–9. [Google Scholar]
- Elsisi, N.S.; Darling-Reed, S.; Lee, E.Y.; Oriaku, E.T.; Soliman, K.F. Ibuprofen and apigenin induce apoptosis and cell cycle arrest in activated microglia. Neurosci. Lett. 2005, 375, 91–96. [Google Scholar] [CrossRef]
- Wruck, C.J.; Claussen, M.; Fuhrmann, G.; Romer, L.; Schulz, A.; Pufe, T.; Waetzig, V.; Peipp, M.; Herdegen, T.; Gotz, M.E. Luteolin protects rat PC12 and C6 cells against MPP+ induced toxicity via an ERK dependent Keap1-Nrf2-ARE pathway. J. Neural Transm. Suppl. 2007, 57–67. [Google Scholar]
- Hus, H.Y.; Chen, Y.P.; Hsu, S.J.; Hsu, C.S.; Chen, C.C.; Chang, H.C. Oriental Materia Medica: A Concise Guide; Oriental Health Art Institute: Long Beach, CA, USA, 1986. [Google Scholar]
- Ojemann, L.M.; Nelson, W.L.; Shin, D.S.; Rowe, A.O.; Buchanan, R.A. Tian ma, An ancient Chinese herb, Offers new options for the treatment of epilepsy and other conditions. Epilepsy Behav. 2006, 8, 376–383. [Google Scholar] [CrossRef]
- Lee, Y.S.; Ha, J.H.; Yong, C.S.; Lee, D.U.; Huh, K.; Kang, Y.S.; Lee, S.H.; Jung, M.W.; Kim, J.A. Inhibitory effects of constituents of Gastrodia elata Bl. on glutamate-induced apoptosis in IMR-32 human neuroblastoma cells. Arch. Pharm. Res. 1999, 22, 404–409. [Google Scholar] [CrossRef]
- Kim, H.J.; Moon, K.D.; Oh, S.Y.; Kim, S.P.; Lee, S.R. Ether fraction of methanol extracts of Gastrodia elata, A traditional medicinal herb, protects against kainic acid-induced neuronal damage in the mouse hippocampus. Neurosci. Lett. 2001, 314, 65–68. [Google Scholar] [CrossRef]
- An, H.; Kim, I.S.; Koppula, S.; Kim, B.W.; Park, P.J.; Lim, B.O.; Choi, W.S.; Lee, K.H.; Choi, D.K. Protective effects of Gastrodia elata Blume on MPP+-induced cytotoxicity in human dopaminergic SH-SY5Y cells. J. Ethnopharmacol. 2010, 130, 290–298. [Google Scholar] [CrossRef]
- Kim, H.J.; Lee, S.R.; Moon, K.D. Ether fraction of methanol extracts of Gastrodia elata, Medicinal herb protects against neuronal cell damage after transient global ischemia in gerbils. Phytother. Res. 2003, 17, 909–912. [Google Scholar] [CrossRef]
- Kim, I.S.; Choi, D.K.; Jung, H.J. Neuroprotective effects of vanillyl alcohol in Gastrodia elata Blume through suppression of oxidative stress and anti-apoptotic activity in toxin-induced dopaminergic MN9D cells. Molecules 2011, 16, 5349–5361. [Google Scholar] [CrossRef]
- Shin, E.J.; Bach, J.H.; Nguyen, T.T.; Nguyen, X.K.; Jung, B.D.; Oh, K.W.; Kim, M.J.; Ko, S.K.; Jang, C.G.; Ali, S.F.; et al. Gastrodia elata bl attenuates methamphetamine-induced dopaminergic toxicity via inhibiting oxidative burdens. Curr. Neuropharmacol. 2011, 9, 118–121. [Google Scholar] [CrossRef]
- Clauson, K.A.; K.M., Shields; McQueen, C.E.; Persad, N. Safety issues associated with commercially available energy drinks. J. Am. Pharm. Assoc. 2008, 48, 55–63. [Google Scholar] [CrossRef]
- Wen, T.C.; Yoshimura, H.; Matsuda, S.; Lim, J.H.; Sakanaka, M. Ginseng root prevents learning disability and neuronal loss in gerbils with 5-minute forebrain ischemia. Acta Neuropathol. 1996, 91, 15–22. [Google Scholar]
- Vogler, B.K.; Pittler, M.H.; Ernst, E. The efficacy of ginseng. A systematic review of randomised clinical trials. Eur. J. Clin. Pharmacol. 1999, 55, 567–575. [Google Scholar] [CrossRef]
- Lee, T.F.; Shiao, Y.J.; Chen, C.F.; Wang, L.C. Effect of ginseng saponins on beta-amyloid-suppressed acetylcholine release from rat hippocampal slices. Planta Med. 2001, 67, 634–637. [Google Scholar] [CrossRef]
- Xiang, Y.Z.; Shang, H.C.; Gao, X.M.; Zhang, B.L. A comparison of the ancient use of ginseng in traditional Chinese medicine with modern pharmacological experiments and clinical trials. Phytother. Res. 2008, 22, 851–858. [Google Scholar] [CrossRef]
- Jin, S.H.; Park, J.K.; Nam, K.Y.; Park, S.N.; Jung, N.P. Korean red ginseng saponins with low ratios of protopanaxadiol and protopanaxatriol saponin improve scopolamine-induced learning disability and spatial working memory in mice. J. Ethnopharmacol. 1999, 66, 123–129. [Google Scholar] [CrossRef]
- Zhang, D.; Yasuda, T.; Yu, Y.; Zheng, P.; Kawabata, T.; Ma, Y.; Okada, S. Ginseng extract scavenges hydroxyl radical and protects unsaturated fatty acids from decomposition caused by iron-mediated lipid peroxidation. Free Radic. Biol. Med. 1996, 20, 145–150. [Google Scholar] [CrossRef]
- Kitts, D.D.; Wijewickreme, A.N.; Hu, C. Antioxidant properties of a North American ginseng extract. Mol. Cell. Biochem. 2000, 203, 1–10. [Google Scholar] [CrossRef]
- Keum, Y.S.; Park, K.K.; Lee, J.M.; Chun, K.S.; Park, J.H.; Lee, S.K.; Kwon, H.; Surh, Y.J. Antioxidant and anti-tumor promoting activities of the methanol extract of heat-processed ginseng. Cancer Lett. 2000, 150, 41–48. [Google Scholar] [CrossRef]
- Hu, S.; Han, R.; Mak, S.; Han, Y. Protection against 1-methyl-4-phenylpyridinium ion (MPP+)-induced apoptosis by water extract of ginseng (Panax ginseng C.A. Meyer) in SH-SY5Y cells. J. Ethnopharmacol. 2011, 135, 34–42. [Google Scholar] [CrossRef]
- Luo, F.C.; Wang, S.D.; Qi, L.; Song, J.Y.; Lv, T.; Bai, J. Protective effect of panaxatriol saponins extracted from Panax notoginseng against MPTP-induced neurotoxicity in vivo. J. Ethnopharmacol. 2011, 133, 448–453. [Google Scholar] [CrossRef]
- Shin, K.Y.; Lee, J.Y.; Won, B.Y.; Jung, H.Y.; Chang, K.A.; Koppula, S.; Suh, Y.H. BT-11 is effective for enhancing cognitive functions in the elderly humans. Neurosci. Lett. 2009, 465, 157–159. [Google Scholar] [CrossRef]
- Chen, Y.L.; Hsieh, C.L.; Wu, P.H.; Lin, J.G. Effect of Polygala tenuifolia root on behavioral disorders by lesioning nucleus basalis magnocellularis in rat. J. Ethnopharmacol. 2004, 95, 47–55. [Google Scholar] [CrossRef]
- Zhang, H.; Han, T.; Zhang, L.; Yu, C.H.; Wan, D.G.; Rahman, K.; Qin, L.P.; Peng, C. Effects of tenuifolin extracted from radix polygalae on learning and memory: A behavioral and biochemical study on aged and amnesic mice. Phytomedicine 2008, 15, 587–594. [Google Scholar] [CrossRef]
- Choi, J.G.; Kim, H.G.; Kim, M.C.; Yang, W.M.; Huh, Y.; Kim, S.Y.; Oh, M.S. Polygalae radix inhibits toxin-induced neuronal death in the Parkinson’s disease models. J. Ethnopharmacol. 2011, 134, 414–421. [Google Scholar] [CrossRef]
- Liang, Z.; Shi, F.; Wang, Y.; Lu, L.; Zhang, Z.; Wang, X. Neuroprotective effects of tenuigenin in a SH-SY5Y cell model with 6-OHDA-induced injury. Neurosci. Lett. 2011, 497, 104–109. [Google Scholar] [CrossRef]
- Howes, M.J.; Houghton, P.J. Plants used in Chinese and Indian traditional medicine for improvement of memory and cognitive function. Pharmacol. Biochem. Behav. 2003, 75, 513–527. [Google Scholar] [CrossRef]
- Russo, A.; Borrelli, F. Bacopa monniera, A reputed nootropic plant: An overview. Phytomedicine 2005, 12, 305–317. [Google Scholar] [CrossRef]
- Hota, S.K.; Barhwal, K.; Baitharu, I.; Prasad, D.; Singh, S.B.; Ilavazhagan, G. Bacopa monniera leaf extract ameliorates hypobaric hypoxia induced spatial memory impairment. Neurobiol. Dis. 2009, 34, 23–39. [Google Scholar] [CrossRef]
- Singh, M.; Murthy, V.; Ramassamy, C. Standardized extracts of Bacopa monniera protect against MPP+- and paraquat-induced toxicity by modulating mitochondrial activities, Proteasomal functions, And redox pathways. Toxicol. Sci. 2012, 125, 219–232. [Google Scholar] [CrossRef]
- Hosamani, R.; Muralidhara. Neuroprotective efficacy of Bacopa monnieri against rotenone induced oxidative stress and neurotoxicity in Drosophila melanogaster. Neurotoxicology 2009, 30, 977–985. [Google Scholar] [CrossRef]
- Sachs, C.; Jonsson, G. Mechanisms of action of 6-hydroxydopamine. Biochem. Pharmacol. 1975, 24, 1–8. [Google Scholar] [CrossRef]
- Shinomol, G.K.; Bharath, M.M.; Muralidhara. Pretreatment with Bacopa monnieri extract offsets 3-nitropropionic acid induced mitochondrial oxidative stress and dysfunctions in the striatum of prepubertal mouse brain. Can. J. Physiol. Pharmacol. 2012, 90, 595–606. [Google Scholar] [CrossRef]
- Shinomol, G.K.; Bharath, M.M.; Muralidhara. Neuromodulatory propensity of Bacopa monnieri leaf extract against 3-nitropropionic acid-induced oxidative stress: in vitro and in vivo evidences. Neurotox. Res. 2012, 22, 102–114. [Google Scholar] [CrossRef]
- Shinomol, G.K.; Mythri, R.B.; Srinivas Bharath, M.M.; Muralidhara. Muralidhara. Bacopa monnieri extract offsets rotenone-induced cytotoxicity in dopaminergic cells and oxidative impairments in mice brain. Cell Mol. Neurobiol. 2012, 32, 455–465. [Google Scholar] [CrossRef]
- Sawant, M.; Isaac, J.C.; Narayanan, S. Analgesic studies on total alkaloids and alcohol extracts of Eclipta alba (Linn.) Hassk. Phytother. Res. 2004, 18, 111–113. [Google Scholar] [CrossRef]
- El Jaber-Vazdekis, N.; Gonzalez, C.; Ravelo, A.G.; Zarate, R. Cloning, Characterization and analysis of expression profiles of a cDNA encoding a hyoscyamine 6beta-hydroxylase (H6H) from Atropa baetica Willk. Plant Physiol. Biochem. 2009, 47, 20–25. [Google Scholar] [CrossRef]
- Gourie-Devi, M.; Ramu, M.G.; Venkataram, B.S. Treatment of Parkinson’s disease in “Ayurveda” (ancient Indian system of medicine): Discussion paper. J. R. Soc. Med. 1991, 84, 491–492. [Google Scholar]
- Nagashayana, N.; Sankarankutty, P.; Nampoothiri, M.R.; Mohan, P.K.; Mohanakumar, K.P. Association of L-DOPA with recovery following Ayurveda medication in Parkinson’s disease. J. Neurol. Sci. 2000, 176, 124–127. [Google Scholar] [CrossRef]
- Sengupta, T.; Vinayagam, J.; Nagashayana, N.; Gowda, B.; Jaisankar, P.; Mohanakumar, K.P. Antiparkinsonian effects of aqueous methanolic extract of Hyoscyamus niger seeds result from its monoamine oxidase inhibitory and hydroxyl radical scavenging potency. Neurochem. Res. 2011, 36, 177–186. [Google Scholar] [CrossRef]
- Foyet, H.S.; Hritcu, L.; Ciobica, A.; Stefan, M.; Kamtchouing, P.; Cojocaru, D. Methanolic extract of Hibiscus asper leaves improves spatial memory deficits in the 6-hydroxydopamine-lesion rodent model of Parkinson’s disease. J. Ethnopharmacol. 2011, 133, 773–779. [Google Scholar] [CrossRef]
- Hritcu, L.; Foyet, H.S.; Stefan, M.; Mihasan, M.; Asongalem, A.E.; Kamtchouing, P. Neuroprotective effect of the methanolic extract of Hibiscus asper leaves in 6-hydroxydopamine-lesioned rat model of Parkinson’s disease. J. Ethnopharmacol. 2011, 137, 585–591. [Google Scholar] [CrossRef]
- Salah, S.M.; Jager, A.K. Screening of traditionally used Lebanese herbs for neurological activities. J. Ethnopharmacol. 2005, 97, 145–149. [Google Scholar] [CrossRef]
- Dos Santos-Neto, L.L.; de Vihena, Toledo, M.A.; Medeiros-Souza, P.; de Souza, G.A. The use of herbal medicine in Alzheimer’s disease—A systematic review. Evid. Based Comeplement Alternat. Med. 2006, 23, 441–445. [Google Scholar] [CrossRef]
- Martins, E.N.; Pessano, N.T.; Leal, L.; Roos, D.H.; Folmer, V.; Puntel, G.O.; Rocha, J.B.; Aschner, M.; Avila, D.S.; Puntel, R.L. Protective effect of Melissa officinalis aqueous extract against Mn-induced oxidative stress in chronically exposed mice. Brain Res. Bull. 2012, 87, 74–79. [Google Scholar] [CrossRef]
- Kim, D.H.; Kim, S.; Jung, W.Y.; Park, S.J.; Park, D.H.; Kim, J.M.; Cheong, J.H.; Ryu, J.H. The neuroprotective effects of the seeds of Cassia obtusifolia on transient cerebral global ischemia in mice. Food Chem. Toxicol. 2009, 47, 1473–1479. [Google Scholar] [CrossRef]
- Ju, M.S.; Kim, H.G.; Choi, J.G.; Ryu, J.H.; Hur, J.; Kim, Y.J.; Oh, M.S. Cassiae semen, A seed of Cassia obtusifolia, Has neuroprotective effects in Parkinson’s disease models. Food Chem. Toxicol. 2010, 48, 2037–2044. [Google Scholar] [CrossRef]
- Drever, B.D.; Anderson, W.G.; Riedel, G.; Kim, D.H.; Ryu, J.H.; Choi, D.Y.; Platt, B. The seed extract of Cassia obtusifolia offers neuroprotection to mouse hippocampal cultures. J. Pharmacol. Sci. 2008, 107, 380–392. [Google Scholar] [CrossRef]
- Nardi, G.M.; Felippi, R.; DalBo, S.; Siqueira-Junior, J.M.; Arruda, D.C.; Delle Monache, F.; Timbola, A.K.; Pizzolatti, M.G.; Ckless, K.; Ribeiro-do-valle, R.M. Anti-inflammatory and antioxidant effects of Croton celtidifolius bark. Phytomedicine 2003, 10, 176–184. [Google Scholar] [CrossRef]
- Nardi, G.M.; Siqueira Junior, J.M.; Delle Monache, F.; Pizzolatti, M.G.; Ckless, K.; Ribeiro-do-Valle, R.M. Antioxidant and anti-inflammatory effects of products from Croton celtidifolius Bailon on carrageenan-induced pleurisy in rats. Phytomedicine 2007, 14, 115–122. [Google Scholar] [CrossRef]
- Moreira, E.L.; Rial, D.; Aguiar, A.S., Jr.; Figueiredo, C.P.; Siqueira, J.M.; DalBo, S.; Horst, H.; de Oliveira, J.; Mancini, G.; dos Santos, T.S.; et al. Proanthocyanidin-rich fraction from Croton celtidifolius Baill confers neuroprotection in the intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine rat model of Parkinson’s disease. J. Neural. Transm. 2010, 117, 1337–1351. [Google Scholar] [CrossRef]
- Chen, J.C.; Tsai, C.C.; Chen, L.D.; Chen, H.H.; Wang, W.C. Therapeutic effect of gypenoside on chronic liver injury and fibrosis induced by CCl4 in rats. Am. J. Chin. Med. 2000, 28, 175–185. [Google Scholar] [CrossRef]
- Megalli, S.; Aktan, F.; Davies, N.M.; Roufogalis, B.D. Phytopreventative anti-hyperlipidemic effects of gynostemma pentaphyllum in rats. J. Pharma. Pharm. Sci. 2005, 8, 507–515. [Google Scholar]
- Wang, Q.F.; Chen, J.C.; Hsieh, S.J.; Cheng, C.C.; Hsu, S.L. Regulation of Bcl-2 family molecules and activation of caspase cascade involved in gypenosides-induced apoptosis in human hepatoma cells. Cancer Lett. 2002, 183, 169–178. [Google Scholar] [CrossRef]
- la Cour, B.; Molgaard, P.; Yi, Z. Traditional Chinese medicine in treatment of hyperlipidaemia. J. Ethnopharmacol. 1995, 46, 125–129. [Google Scholar] [CrossRef]
- Shang, L.; Liu, J.; Zhu, Q.; Zhao, L.; Feng, Y.; Wang, X.; Cao, W.; Xin, H. Gypenosides protect primary cultures of rat cortical cells against oxidative neurotoxicity. Brain Res. 2006, 1102, 163–174. [Google Scholar] [CrossRef]
- Wang, Y.H.; Samoylenko, V.; Tekwani, B.L.; Khan, I.A.; Miller, L.S.; Chaurasiya, N.D.; Rahman, M.M.; Tripathi, L.M.; Khan, S.I.; Joshi, V.C.; et al. Composition, Standardization and chemical profiling of Banisteriopsis caapi, A plant for the treatment of neurodegenerative disorders relevant to Parkinson’s disease. J. Ethnopharmacol. 2010, 128, 662–671. [Google Scholar] [CrossRef]
- Choi, H.S.; Park, M.S.; Kim, S.H.; Hwang, B.Y.; Lee, C.K.; Lee, M.K. Neuroprotective effects of herbal ethanol extracts from Gynostemma pentaphyllum in the 6-hydroxydopamine-lesioned rat model of Parkinson’s disease. Molecules 2010, 15, 2814–2824. [Google Scholar] [CrossRef]
- Nizam, I.; Mushfiq, M. Antioxidant activity of water and alcohol extracts of Thuja orientalis leaves. Oriental Pharm. Exp. Med. 2007, 7, 65–73. [Google Scholar] [CrossRef]
- Choi, Y.; Moon, A.; Kim, Y.C. A pinusolide derivative, 15-methoxypinusolidic acid from Biota orientalis inhibits inducible nitric oxide synthase in microglial cells: implication for a potential anti-inflammatory effect. Int. Immunopharmacol. 2008, 8, 548–555. [Google Scholar] [CrossRef]
- Koo, K.A.; Kim, S.H.; Lee, M.K.; Kim, Y.C. 15-Methoxypinusolidic acid from Biota orientalis attenuates glutamate-induced neurotoxicity in primary cultured rat cortical cells. Toxicol. In Vitro 2006, 20, 936–941. [Google Scholar] [CrossRef]
- Ju, M.S.; Lee, P.; Kim, H.G.; Lee, K.Y.; Hur, J.; Cho, S.H.; Sung, S.H.; Oh, M.S. Protective effects of standardized Thuja orientalis leaves against 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells. Toxicol. In Vitro 2010, 24, 759–765. [Google Scholar] [CrossRef]
- Yamaguti-Sasaki, E.; Ito, L.A.; Canteli, V.C.; Ushirobira, T.M.; Ueda-Nakamura, T.; Dias Filho, B.P.; Nakamura, C.V.; de Mello, J.C. Antioxidant capacity and in vitro prevention of dental plaque formation by extracts and condensed tannins of Paullinia cupana. Molecules 2007, 12, 1950–1963. [Google Scholar] [CrossRef]
- Datla, K.P.; Zbarsky, V.; Rai, D.; Parkar, S.; Osakabe, N.; Aruoma, O.I.; Dexter, D.T. Short-term supplementation with plant extracts rich in flavonoids protect nigrostriatal dopaminergic neurons in a rat model of Parkinson’s disease. J. Am. Coll. Nutr. 2007, 26, 341–349. [Google Scholar]
- Shirwaikar, A.; Rajendran, K.; Punitha, I.S. In vitro antioxidant studies on the benzyl tetra isoquinoline alkaloid berberine. Biol. Pharm. Bull. 2006, 29, 1906–1910. [Google Scholar] [CrossRef]
- Fragoso, V.; do Nascimento, N.C.; Moura, D.J.; e Silva, A.C.; Richter, M.F.; Saffi, J.; Fett-Neto, A.G. Antioxidant and antimutagenic properties of the monoterpene indole alkaloid psychollatine and the crude foliar extract of Psychotria umbellata Vell. Toxicol. In Vitro 2008, 22, 559–566. [Google Scholar] [CrossRef]
- Liu, Y.; Ji, H.; Dong, J.; Zhang, S.; Lee, K.J.; Matthew, S. Antioxidant alkaloid from the South China Sea marine sponge Iotrochota sp. Z. Naturforsch. C. 2008, 63, 636–638. [Google Scholar]
- Nobre, H.V., Jr.; Cunha, G.M.; de Vasconcelos, L.M.; Magalhaes, H.I.; Oliveira Neto, R.N.; Maia, F.D.; de Moraes, M.O.; Leal, L.K.; Viana, G.S. Caffeine and CSC, adenosine A2A antagonists, Offer neuroprotection against 6-OHDA-induced neurotoxicity in rat mesencephalic cells. Neurochem. Int. 2010, 56, 51–58. [Google Scholar] [CrossRef]
- Basile, A.; Ferrara, L.; Pezzo, M.D.; Mele, G.; Sorbo, S.; Bassi, P.; Montesano, D. Antibacterial and antioxidant activities of ethanol extract from Paullinia cupana Mart. J. Ethnopharmacol. 2005, 102, 32–36. [Google Scholar] [CrossRef]
- de Oliveira, D.M.; Barreto, G.; Galeano, P.; Romero, J.I.; Holubiec, M.I.; Badorrey, M.S.; Capani, F.; Alvarez, L.D. Paullinia cupana Mart. var. Sorbilis protects human dopaminergic neuroblastoma SH-SY5Y cell line against rotenone-induced cytotoxicity. Hum. Exp. Toxicol. 2011, 30, 1382–1391. [Google Scholar] [CrossRef]
- Chen, J.K.; Chen, T.T. Tonic herbs. In Chinese Medical Herbology and Pharmacology; Crampton, L., Ed.; Art of Medicine Press: City of Industry, CA, USA, 2004. [Google Scholar]
- Kim, A.J.; Park, S. Mulberry extract supplements ameliorate the inflammation-related hematological parameters in carrageenan-induced arthritic rats. J. Med. Food 2006, 9, 431–435. [Google Scholar] [CrossRef]
- Hwang, K.H.; Kim, Y.K. Promoting effect and recovery activity from physical stress of the fruit of Morus alba. Biofactors 2004, 21, 267–271. [Google Scholar] [CrossRef]
- Kang, T.H.; Hur, J.Y.; Kim, H.B.; Ryu, J.H.; Kim, S.Y. Neuroprotective effects of the cyanidin-3-O-beta-d-glucopyranoside isolated from mulberry fruit against cerebral ischemia. Neurosci. Lett. 2006, 391, 122–126. [Google Scholar] [CrossRef]
- Isabelle, M.; Lee, B.L.; Ong, C.N.; Liu, X.; Huang, D. Peroxyl radical scavenging capacity, Polyphenolics, And lipophilic antioxidant profiles of mulberry fruits cultivated in southern China. J. Agric. Food Chem. 2008, 56, 9410–9416. [Google Scholar] [CrossRef]
- Shih, P.H.; Chan, Y.C.; Liao, J.W.; Wang, M.F.; Yen, G.C. Antioxidant and cognitive promotion effects of anthocyanin-rich mulberry (Morus atropurpurea L.) on senescence-accelerated mice and prevention of Alzheimer’s disease. J. Nutr. Biochem. 2010, 21, 598–605. [Google Scholar] [CrossRef]
- Liu, L.K.; Lee, H.J.; Shih, Y.W.; Chyau, C.C.; Wang, C.J. Mulberry anthocyanin extracts inhibit LDL oxidation and macrophage-derived foam cell formation induced by oxidative LDL. J. Food Sci. 2008, 73, H113–H121. [Google Scholar] [CrossRef]
- Dugo, P.; Mondello, L.; Errante, G.; Zappia, G.; Dugo, G. Identification of anthocyanins in berries by narrow-bore high-performance liquid chromatography with electrospray ionization detection. J. Agric. Food Chem. 2001, 49, 3987–3992. [Google Scholar] [CrossRef]
- Moyer, R.A.; Hummer, K.E.; Finn, C.E.; Frei, B.; Wrolstad, R.E. Anthocyanins, Phenolics, And antioxidant capacity in diverse small fruits: Vaccinium, Rubus, And ribes. J. Agric. Food Chem. 2002, 50, 519–525. [Google Scholar] [CrossRef]
- Zhang, W.; Han, F.; He, J.; Duan, C. HPLC-DAD-ESI-MS/MS analysis and antioxidant activities of nonanthocyanin phenolics in mulberry (Morus alba L.). J. Food Sci. 2008, 73, C512–C518. [Google Scholar] [CrossRef]
- Kim, H.G.; Ju, M.S.; Shim, J.S.; Kim, M.C.; Lee, S.H.; Huh, Y.; Kim, S.Y. Oh, M.S. Mulberry fruit protects dopaminergic neurons in toxin-induced Parkinson’s disease models. Br. J. Nutr. 2010, 104, 8–16. [Google Scholar] [CrossRef]
- Nam, S.; Jang, H.W.; Shibamoto, T. Antioxidant activities of extracts from teas prepared from medicinal plants, Morus alba L., Camellia sinensis L. and Cudrania tricuspidata and their volatile components. J. Agric. Food Chem. 2012, 60, 9097–9105. [Google Scholar] [CrossRef]
- Rojas, P.; Serrano-Garcia, N.; Mares-Samano, J.J.; Medina-Campos, O.N.; Pedraza-Chaverri, J.; Ogren, S.O. EGb761 protects against nigrostriatal dopaminergic neurotoxicity in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism in mice: Role of oxidative stress. Eur. J. Neurosci. 2008, 28, 41–50. [Google Scholar] [CrossRef]
- Shim, J.S.; Kim, H.G.; Ju, M.S.; Choi, J.G.; Jeong, S.Y.; Oh, M.S. Effects of the hook of Uncaria rhynchophylla on neurotoxicity in the 6-hydroxydopamine model of Parkinson’s disease. J. Ethnopharmacol. 2009, 126, 361–365. [Google Scholar] [CrossRef]
- Occhiuto, F.; Palumbo, D.R.; Samperi, S.; Zangla, G.; Pino, A.; De Pasquale, R.; Circosta, C. The isoflavones mixture from Trifolium pratense L. protects HCN 1-A neurons from oxidative stress. Phytother. Res. 2009, 23,, 192–196. [Google Scholar] [CrossRef]
- Tian, L.L.; Wang, X.J.; Sun, Y.N.; Li, C.R.; Xing, Y.L.; Zhao, H.B.; Duan, M.; Zhou, Z.; Wang, S.Q. Salvianolic acid B, An antioxidant from Salvia miltiorrhiza, Prevents 6-hydroxydopamine induced apoptosis in SH-SY5Y cells. Int. J. Biochem. Cell Biol. 2008, 40, 409–422. [Google Scholar] [CrossRef]
- Zhou, L.; Kang, J.; Fan, L.; Ma, X.C.; Zhao, H.Y.; Han, J.; Wang, B.R.; Guo, D.A. Simultaneous analysis of coumarins and secoiridoids in Cortex Fraxini by high-performance liquid chromatography-diode array detection-electrospray ionization tandem mass spectrometry. J. Pharm. Biomed. Anal. 2008, 47, 39–46. [Google Scholar] [CrossRef]
- Mu, X.; He, G.; Cheng, Y.; Li, X.; Xu, B.; Du, G. Baicalein exerts neuroprotective effects in 6-hydroxydopamine-induced experimental parkinsonism in vivo and in vitro. Pharmacol. Biochem. Behavior 2009, 92, 642–648. [Google Scholar] [CrossRef]
- RajaSankar, S.; Manivasagam, T.; Sankar, V.; Prakash, S.; Muthusamy, R.; Krishnamurti, A.; Surendran, S. Withania somnifera root extract improves catecholamines and physiological abnormalities seen in a Parkinson’s disease model mouse. J. Ethnopharmacol. 2009, 125, 369–373. [Google Scholar] [CrossRef]
- Kim, S.; Park, S.E.; Sapkota, K.; Kim, M.K.; Kim, S.J. Leaf extract of Rhus verniciflua Stokes protects dopaminergic neuronal cells in a rotenone model of Parkinson’s disease. J. Pharm. Pharmacol. 2011, 63, 1358–1367. [Google Scholar]
- Park, B.C.; Lee, Y.S.; Park, H.J.; Kwak, M.K.; Yoo, B.K.; Kim, J.Y.; Kim, J.A. Protective effects of fustin, a flavonoid from Rhus verniciflua Stokes, on 6-hydroxydopamine-induced neuronal cell death. Exp. Mol. Med. 2007, 39, 316–326. [Google Scholar]
- An, L.; Liu, S.; Dong, Y.; Tang, B.; Dong, W. Protective effect of effective part of Acanthopanacis senticosus on damage of PC12 cells induced by MPP+. Zhongguo Zhong Yao Za Zhi 2010, 35, 2021–2026. [Google Scholar]
- Lee, C.H.; Hwang, D.S.; Kim, H.G.; Oh, H.; Park, H.; Cho, J.H.; Lee, J.M.; Jang, J.B.; Lee, K.S.; Oh, M.S. Protective effect of Cyperi rhizoma against 6-hydroxydopamine-induced neuronal damage. J. Med. Food 2010, 13, 564–571. [Google Scholar] [CrossRef]
- Ahmad, M.; Yousuf, S.; Khan, M.B.; Ahmad, A.S.; Saleem, S.; Hoda, M.N.; Islam, F. Protective effects of ethanolic extract of Delphinium denudatum in a rat model of Parkinson’s disease. Hum. Exp. Toxicol. 2006, 25, 361–368. [Google Scholar] [CrossRef]
- Milioli, E.M.; Cologni, P.; Santos, C.C.; Marcos, T.D.; Yunes, V.M.; Fernandes, M.S.; Schoenfelder, T.; Costa-Campos, L. Effect of acute administration of hydroalcohol extract of Ilex paraguariensis St Hilaire (Aquifoliaceae) in animal models of Parkinson’s disease. Phytother. Res. 2007, 21, 771–776. [Google Scholar] [CrossRef]
- Wang, H.; Li, C.; Wu, X.; Lou, X. Effects of Gynostemma pentaphyllum (Thunb.) Makino polysaccharides supplementation on exercise tolerance and oxidative stress induced by exhaustive exercise in rats. Afr. J. Argri. Res. 2012, 7, 2632–2638. [Google Scholar]
- Kleparnik, K.; Mala, Z.; Havac, Z.; Blazkova, M.; Holla, L.; Bocek, P. Fast detection of a (CA)18 microsatellite repeat in the IgE receptor gene by capillary electrophoresis with laser-induced fluorescence detection. Electrophoresis 1998, 19, 249–255. [Google Scholar] [CrossRef]
- Lin, S.; Liu, M.T.; Wang, S.J.; Li, S.; Yang, Y.C.; Shi, J.G. Coumarins from branch of Fraxinus sieboldiana and their antioxidative activity. Zhongguo Zhong Yao Za Zhi 2008, 33, 1708–1710. [Google Scholar]
- Liu, R.H. Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am. J. Clin. Nutr. 2003, 78, 517–520. [Google Scholar]
- Valkovic, P.; Benetin, J.; Blazicek, P.; Valkovicova, L.; Gmitterova, K.; Kukumberg, P. Reduced plasma homocysteine levels in levodopa/entacapone treated Parkinson patients. Parkinsonism Relat. Disord. 2005, 11, 253–256. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Koppula, S.; Kumar, H.; More, S.V.; Lim, H.-W.; Hong, S.-M.; Choi, D.-K. Recent Updates in Redox Regulation and Free Radical Scavenging Effects by Herbal Products in Experimental Models of Parkinson’s Disease. Molecules 2012, 17, 11391-11420. https://doi.org/10.3390/molecules171011391
Koppula S, Kumar H, More SV, Lim H-W, Hong S-M, Choi D-K. Recent Updates in Redox Regulation and Free Radical Scavenging Effects by Herbal Products in Experimental Models of Parkinson’s Disease. Molecules. 2012; 17(10):11391-11420. https://doi.org/10.3390/molecules171011391
Chicago/Turabian StyleKoppula, Sushruta, Hemant Kumar, Sandeep Vasant More, Hyung-Woo Lim, Soon-Min Hong, and Dong-Kug Choi. 2012. "Recent Updates in Redox Regulation and Free Radical Scavenging Effects by Herbal Products in Experimental Models of Parkinson’s Disease" Molecules 17, no. 10: 11391-11420. https://doi.org/10.3390/molecules171011391
APA StyleKoppula, S., Kumar, H., More, S. V., Lim, H. -W., Hong, S. -M., & Choi, D. -K. (2012). Recent Updates in Redox Regulation and Free Radical Scavenging Effects by Herbal Products in Experimental Models of Parkinson’s Disease. Molecules, 17(10), 11391-11420. https://doi.org/10.3390/molecules171011391